Engineering Electromagnetics
9th Edition
ISBN: 9781260029963
Author: Hayt
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.20P
To determine
To prove:
The relation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q3
(a)
For the digital control system given in Figure 3, by adding phantom samplers to
show that the z transfer function of the closed-loop system is given by
C(z)
R(z)
G(z)
1+ G(z) H₁H₂(z)
+
R(s)
G(s)
C(s)
H₂(s)
H₁(s)
Figure 3
(b)
The analogue compensator
5s + 1
D(s) =
0.4s +1
is implemented digitally with sampling period 0.2 seconds to control the depth of
a submarine system. Use the pole-zero mapping method to find a digital
approximation to the analogue compensator.
Consider an RC circuit with a 5 ohm resistor, a 0.05 faraday capacitor, and a constant 60 V battery. If the initial charge on the capacitor is zero, i.e. q(0) = 0 determines the charge on the capacitor at any time q(t).Strictly not using chatgpt or AI need proper explaination by hand
<
8:31
Antennas Past papers
Sessional-II.pdf
Quaid-i-Azam University
Sessional-II, Spring 2021
(Antennas (EL-724)
50%
Date: 17-06-2021
NOTE: Due date for submission of Sessional-II is 17-06-2021 at 4:30 pm.
Question 1
Consider a linear wire antenna of finite length and radius a. The radius a of
the antenna is taken to be very small as compared to an operating wavelength
A, i.e., a << A. The electric current density vector J(r) of the antenna is
given by,
J(r) =ė, 16()()()
f(h's) =
sink(1/2 h)]
sin kl/2]
-
where h, and hy are dummy coordinates which form a three perpendicular
coordinate system and 5(-) is a Dirac delta function. The geometry of the
problem is given in Fig. 1. It should be noted that here axial unit vector è,
in spherical coordinates are given below,
=è, sine, coso, +ê, sin 0, sino, + è, cose,
Find the electric and magnetic fields in the near and far zone. Also find the
maximum directivity D-
←
а
Chapter 1 Solutions
Engineering Electromagnetics
Ch. 1 - If A represents a vector two units in length...Ch. 1 - Vector A extends from the origin to (1, 2, 3), and...Ch. 1 - 1.3 The vector from the origin to point A is given...Ch. 1 - A circle, centered at the origin with a radius of...Ch. 1 - An equilateral triangle lies in the xy plane with...Ch. 1 - Find the acute angle between the two vector...Ch. 1 - Given the field F=xax+yay. If F. G =2xy and FĂ— G...Ch. 1 - Prob. 1.8PCh. 1 - A field is given as G=[25/(x2+y2)](xax+yay). Find...Ch. 1 - Prob. 1.10P
Ch. 1 - Given the points M(0.1, -0.2, -0.1), N(-02, 0.1,...Ch. 1 - 1.21 Write an expression recrangu1ar components...Ch. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Three vectors extending from the origin are given...Ch. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Exercise in cylinder components ;(a) the vector...Ch. 1 - Prob. 1.22PCh. 1 - The surfaces p=3,p=5,=130o,z=3andz=4.5 define a...Ch. 1 - Two unit vectors, a1 and a2, lie in the xy plane...Ch. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - A vector field is expressed as F = Az az where A...Ch. 1 - Consider a problem analogous to the varying wind...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Make a circuit in tinkerkat from the following: Truth table analysisA) Unsimplified function:From the truth table A, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'B'CF) + (A'BC'F') + (A'BCF) + (AB'C'F') + (AB'CF) + (ABC'F) + (ABCF)B) Non-simplified function:From truth table B, we can derive the unsimplified equationBoolean expression:F = (A'B'C'F') + (A'BC'F) + (A'BCF') + (AB'CF') + (ABC'F')Karnaugh MapsTO)\|00|01|11|10|--|------|------|------|------|00|1 |0|0|1|01|0|1|1|0|11|0|1|0|1|0|10|1|0|1|0|B)\|00|01|11|10|--|------|------|------|------|00|1|0|0|0|01|0|1|1|0|11|0|1|0|0|10|0|0|0|0|Simplified functions (using Karnaugh maps)TO)•Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A’F + BF + CFB)• Adjacent 1s are grouped together on the Karnaugh map.• The simplified function is: F = A'C'F + BCF Schematic design (simplified functions)TO)•NO door for A•AND gate for A' and F•AND gates for B and F, and C and F•OR gate for…arrow_forwardQ2. 22 A four-pole, 415 V 50Hz induction motor supplies its rated power to a constant load. The rated speed of the motor is 1470 rpm. i) Draw the equivalent electrical circuit of the motor ii) Calculate the slip frequency and slip iii) If the supply voltage is changed to 207.5 V_25 Hz, calculate the motor speed, slip frequency, and slip. iv) Sketch torque-speed characteristics of the motor when the supply voltages are 415 V 50 Hz, 207.5 V_25 Hz and 415 V_60 Hz respectively; Compare the peak torques of the 415 V_50 Hz case and the 415 V_60 Hz case. b) A synchronous generator connects to an infinite bus. The terminal voltage VT and output current IA of the generator are shown in the phasor diagram in Figure Q2. This generator is required to double its real power output by increasing the governor's set point while maintaining the field current. With the aid of the phasor diagram, analyse the effect of the change of governor's set points on the internal generated voltage EA, the output…arrow_forwardThe figure below shows a 50Hz balanced star-star three-phase circuit with line loss. The load impedance Z = 40 + j15.08 Ω.(a)Calculate the line load impedance ZL.(b)Determine the average power:(i)Delivered by the three-phase source.(ii)Delivered to the three-phase load.(iii)Absorbed by the three-phase line.(c)Calculate the power efficiency of the system.arrow_forward
- Three concentric spherical shells 7=1, 7=2, 7=3 m, respectively, have charge distriutions 2, 4 and 5 μC/m². (a) Calculate the flux through 7=1.5 m² and r = 2.5m. (b) Find D at 7=0.5m, r=2.5m, and r=3.5m .arrow_forwardVerify the divergence theorem for the function A = r²a, + r sin 0 cos > a, over the surface of a quarter of a hemisphere defined by 0 < r < 3, 0 < & < π/2, 0 < 0 < π/2.arrow_forwardA charge distribution of the following form is set up in air: p₁ =10% e C/m³, where 7 is the radial distance of he spherical coordinates. Find the electric field intensity Ę everywhere.arrow_forward
- Q1. a) b) A 200V DC series motor has armature resistance of 0.1 Q and field resistance of 0.15 Q. The motor runs at a speed of 600 rev/min when the shaft torque is 28 Nm. Friction and windage losses at this speed are 251.3 W. Calculate armature current, copper loss and efficiency. A DC shunt motor has an armature resistance of 0.22, a field resistance of 200 and is connected to a 200 V supply. i) Draw the equivalent electrical circuit of the motor ii) If the motor runs at 1500 rpm and takes a current of 11 A from the supply, calculate the output torque of the motor iii) If the supply voltage is kept constant but the load torque is changed so that the supply current decreased to 6 A, determine the motor speed and the output torque.arrow_forwardThree concentric spherical shells 7=1, 7=2, 7=3 m, respectively, have charge distriutions 2, 4 and 5 µC/m². (a) Calculate the flux through 7=1.5m and r = 2.5 m. (b) Find D at 7=0.5m, r=2.5m, and 7= 3.5m.arrow_forwardim not sure this answer makes sense to me. The question is "Between which terminal block and screw numbers is relay coil CR-7 located?" The answer points towards lines in a seperate text? My answer was "TB-5B between screw numbers 2 & 10" could someone please review this and let me know if I am correct? (This is not for a graded assignment, It is not worth any marks and my professor has not released any answer keys)arrow_forward
- Need Handwritten solution do not use chatgpt or AIarrow_forwardThe figure below shows a 60-Hz balanced star-star three-phase circuit.(a) For the equivalent circuits of the load impedance Z shown in (ii), calculate the load impedance Z, the line current IA, the power factor, and the total average power delivered to the three-phase load.(b) The power factor is corrected to 1.00 by inserting a capacitance in parallel to the resistive and inductive load as shown in (iii). Determine the capacitance value C.arrow_forwardFor a series resonant circuit with the following specifications:1. A resonant frequency fn = 4.5kHz.2. A bandwidth BW = 150Hz3. A peak current Imax = 100mA at resonance.(a) Find the values of the quality factor, the resistance, the inductance, and the capacitance.(b) Calculate the power consumed and energy stored at the resonance.(c) Determine the inductance and capacitance required to reduce the bandwidth of the resonant circuit to 70 Hz without changing the resonant frequency or peak current.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,