
(a)
Interpretation:
The mean speed from Maxwell Boltzmann distribution for a gas of mass
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Mean velocity:
Mean velocity or average velocity is the arithmetic mean of the velocities possessed by the gas molecules at a given temperature.
Say no. of molecules in gas is
Hence the mean velocity is
(a)

Explanation of Solution
Mean speed of molecules with a Maxwell-Boltzmann distribution is
It has to be determined with the help of calculus that the mean speed is
Now applying calculus,
From the value of the Maxwell-Boltzmann distribution in three dimension it can be concluded that,
Now applying calculus,
According to the question the integral form that has to be used is,
Now comparing the above two forms it can be concluded that,
Hence by putting the values in the form it is found that,
Hence the mean speed obtained from Maxwell-Boltzmann distribution is
(b)
Interpretation:
The root mean square velocity from Maxwell Boltzmann distribution for a gas of mass
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Root mean square velocity:
Root mean square velocity can be defined as the square root of the mean of the squares of the different velocities possessed by the molecules of the gas at a given temperature.
Say no. of molecules in gas is
Hence the mean velocity is
Hence the root mean square velocity is given by,
(b)

Explanation of Solution
The mean speed of molecules with a Maxwell-Boltzmann distribution is
It has to be determined with the help of calculus that the root mean square velocity.is
Now applying calculus,
From the value of the Maxwell-Boltzmann distribution in three dimensions it can be concluded that,
Now applying calculus,
According to the question the integral form that has to be used is,
Now comparing the above two forms it can be concluded that,
Hence by putting the values in the form it is found that,
Now from this the root mean square velocity can be calculated as,
As
Hence the root mean square velocity calculated from Maxwell-Boltzmann distribution is
(c)
Interpretation:
An expression for the most probable speed has to be derived from Maxwell-Boltzmann distribution with the help of differentiation.
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
Most probable velocity:
Most probable velocity can be defined as the velocity possessed by maximum number of molecules of gas at a given temperature.
(c)

Explanation of Solution
The maximum of Maxwell-Boltzmann distribution occurs when,
Now according to the definition of most probable velocity, it is the velocity which is obtained by maximum no. of gas molecules.
Hence most probable velocity can be calculated as,
From the value of the Maxwell-Boltzmann distribution in three dimension it can be concluded that,
Thus from the above equations,
Applying rules of differentiation,
As
Hence,
Hence the most probable velocity of gas from the Maxwell-Boltzmann distribution is
(d)
Interpretation:
The fraction of
Concept Introduction:
Maxwell-Boltzmann distribution:
Maxwell-Boltzmann distribution is the particular probability distribution. It was first defined and used for describing the particle speeds in idealized gases where the particle movement is free without interaction with one another except very brief collision in which they exchange energy and momentum with each other.
Maxwell-Boltzmann distribution is the result of kinetic theory of gases. Mathematically, this is the chi distribution with the three degrees of freedom i.e. the component of velocity vector in three dimensions with a scale parameter measuring speeds in units proportional to the square root of the ratio of the temperature and particle mass.
According to Maxwell-Boltzmann’s distribution the probability distribution in all three dimensions are given as,
This probability density is actually the measure of the fraction of molecules present in a given velocity range at a given temperature.
Where
(d)

Answer to Problem 1.1PR
The fraction of
Explanation of Solution
The fraction of
From the value of the Maxwell-Boltzmann distribution in three dimensions it can be concluded that,
Hence,
Now putting the values of velocities and temperature in the above equation,
Hence the fraction of
Want to see more full solutions like this?
Chapter 1 Solutions
Elements Of Physical Chemistry
- Predict the major products of the following organic reaction: O O + A ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. eserved. Terms of Use | Privacy Center >arrow_forward(EXM 2, PRBLM 3) Here is this problem, can you explain it to me and show how its done. Thank you I need to see the work for like prbl solving.arrow_forwardcan someone draw out the reaction mechanism for this reaction showing all bonds, intermediates and side products Comment on the general features of the 1H-NMR spectrum of isoamyl ester provided belowarrow_forward
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactants in the following reaction: X + Y H+ two steps Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Х :arrow_forwardDraw the mechanism of friedel-crafts acylation using acetyl chloride of m-Xylenearrow_forward
- Don't used hand raiting and don't used Ai solution and correct answerarrow_forwardH R Part: 1/2 :CI: is a/an electrophile Part 2 of 2 Draw the skeletal structure of the product(s) for the Lewis acid-base reaction. Include lone pairs and formal charges (if applicable) on the structures. 4-7: H ö- H Skip Part Check X :C1: $ % L Fi Click and drag to start drawing a structure. MacBook Pro & ㅁ x G 0: P Add or increase positive formal cha Save For Later Submit ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centearrow_forwardDraw the friedel-crafts acylation mechanism of m-Xylenearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





