ELEMENTS OF CHEM. REACTION ENGR
5th Edition
ISBN: 9780135486498
Author: Fogler
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1, Problem 1.1P
- (a) Revisit Example 1-1. Rework this example using Equation (3-1) on page 71.
- (b) Revisit Example 1-2. Calculate the volume of a CSTR for the conditions used to calculate the plug-flow reactor volume in Example 1-2. Which volume is larger, the PFR or the CSTR? Explain why. Suggest two ways to work this problem incorrectly.
- (c) Revisit Example 1-2. Calculate the time to reduce the number of moles of A to 1% of its initial value in a constant-volume batch reactor for the same reaction and data in Example 1-2. Suggest two ways to work this problem incorrectly.
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule04:27
Students have asked these similar questions
Material Science
Electronic devices found in integrated circuits are composed of very high purity silicon to which has been added small and very
controlled concentrations of elements found in Groups IIIA and VA of the periodic table. For Si that has had added 9.1 × 1021 atoms
per cubic meter of antimony compute (a) the weight percent and (b) the atom percent of Sb present. (Hint: use Equation
100
C₁
=
1 +
NAP2
N1A₁
P2
P1
(a)
0.00636
%wt
(b)
i
0.0182
%at
Use the binary diagram, 45 line above and material balance to solve the
One thousand kg/h of a (50-50 wt%) acetone-in-water solution is to be extracted at 25C in a continuous,
countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10 wt% acetone. Using the
following equilibrium data, determine with an equilateral-triangle diagram:
a the minimum flow rate of solvent;
b. the number of stages required for a solvent rate equal to 1.5 times minimum, and composition of each
streamleaving each stage.
Repeat the calculation of (a) and (b) if the solvent used has purity 93wt% (4wr% acetone, 3wt% water
impurities)
acetone
0.6
water
0.13
1,1,2-trichloroethane
0.27
Raffinate. Weight
Fraction Acetone
Extract. Weight
Fraction Acetone
0.5
0.04
0.46
0.44
0.56
0.4
0.03
0.57
0.29
0.40
0.3
0.02
0.681
0.12
0.18
0.2
0.015
0.785
0.0
0.0
0.1
0.01
0.89
0.55
0.35
0.1
0.5
0.43
0.07
0.4
0.57
0.03
0.3
0.68
0.02
0.2
0.79
0.01
0.1
0.895
0.005
Chapter 1 Solutions
ELEMENTS OF CHEM. REACTION ENGR
Ch. 1 - What does a negative number for the rate of...Ch. 1 - What assumptions were made in the derivation of...Ch. 1 - Use the mole balance to derive an equation...Ch. 1 - (a) Revisit Example 1-1. Rework this example using...Ch. 1 - The reaction A + B 2C takes place in an unsteady...Ch. 1 - Prob. 1.5PCh. 1 - Enrico Fermi (19011954) Problems (EFP). Enrico...Ch. 1 - What is wrong with this solution? The irreversible...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Select the speed, feed, and depth of cut for turning wrought, low-carbon steel (hardness of 200 BHN) on a lathe...
Degarmo's Materials And Processes In Manufacturing
Write a Java loop that will display the phrase One more time four times. Also give any declarations or initiali...
Java: An Introduction to Problem Solving and Programming (8th Edition)
For the circuit shown, find (a) the voltage υ, (b) the power delivered to the circuit by the current source, an...
Electric Circuits. (11th Edition)
Porter’s competitive forces model: The model is used to provide a general view about the firms, the competitors...
Management Information Systems: Managing The Digital Firm (16th Edition)
In Exercises 55 through 60, find the value of the given function where a and b are numeric variables of type Do...
Introduction To Programming Using Visual Basic (11th Edition)
Use the following tables for your answers to questions 3.7 through 3.51 : PET_OWNER (OwnerID, OwnerLasst Name, ...
Database Concepts (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Ternary Phase Diagram+ Material balance One thousand kg/h of a (50-50 wt%) acetone-in-water solution is to be extracted at 25C in a continuous, countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10 wt% acetone. Using the following equilibrium data, determine with an equilateral-triangle diagram: a- the minimum flow rate of solvent; b- the number of stages required for a solvent rate equal to 1.5 times minimum, and composition of each streamleaving each stage. c. Repeat the calculation of (a) and (b) if the solvent used has purity 93wt% (4wr% acetone, 3wt% water impurities) acetone water 1,1,2-trichloroethane Raffinate. Weight Extract. Weight 0.6 0.13 0.27 Fraction Acetone Fraction Acetone 0.5 0.04 0.46 0.44 0.56 0.4 0.03 0.57 0.29 0.40 0.3 0.02 0.68 0.12 0.18 0.2 0.015 0.785 0.0 0.0 0.1 0.01 0.89 0.55 0.35 0.1 0.5 0.43 0.07 0.4 0.57 0.03 0.3 0.68 0.02 0.2 0.79 0.01 0.1 0.895 0.005arrow_forwardI need a detailed drawing with explanation so A 4 しか شكا Write a complete C++ program that includes a function to check whether a given sequence of parentheses is balanced using stack or Linked stack 7:30 م PU + 9625 =-2c125 750 x2.01 58³arrow_forwardTernary Phase Diagram+ Material balance Feed mixture weighing 200 kg of unknown composition containing water, acetic acid, isopropyl ether is contacted in a single stage with 280kg mixture containing 40wt% acetic acid. 10wt% water and 50wt% isopropyl ether. The resulting raffinate layer weight 320 kg and containing 29.5 wt% acetic acid, 66.5 wt% water and 4wt% isopropyl ether. Determine the composition of the original feed mixture and the extract layer Water layer Isopropyl ether layer acetic acid 0 water 98.8 Isopropyl ether 1.2 acetic acid 0 water Isopropyl ether 0.6 99.4 0.69 98.1 1.2 0.18 0.5 99.3 1.41 97.1 1.5 0.37 0.7 98.9 2.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.93 1 97.1 13.3 84.4 2.3 4.82 1.9 93.3 25.5 71.1 3.4 11.4 3.9 84.7 36.7 58.9 4.4 21.6 6.9 71.5 44.3 5.1 10.6 31.1 10.8 58.5 46.4 37.1 16.5 36.2 15.1 48.7arrow_forward
- Graphically+Material balance 2500 kg/hr of (20-80) nicotine water solution is to be extracted with benzene containing 0.5% nicotine in the 1st and 2nd stages while the 3rd stage is free of nicotine. Cross-current operation is used with different amounts of solvent for each stages 2000kg/hr in the 1st stage, 2300 kg/hr in the 2nd stage, 2600 kg/hr in the 3rd, determine:- a- The final raffinate concentration and % extraction. b- b-The minimum amount of solvent required for counter-current operation if the minimum concentration will be reduced to 5% in the outlet raffinate. Equilibrium data Wt % Nicotine in water 0 4 16 25 Wt % Nicotine in benzene 0 4 21 30arrow_forwardgraphically +material balance 1000 Kg/hr on an acetone water mixture containing 10% of acetone is to be extracted with trichloroethane. The recovered solvent to be used is free of acetone. If 95% recovery of acetone is desired, the equilibrium relationship is given by kg acetone/kg trichloroethane 1.65 kg acetone/kg water. Estimate the number of stages required if 1.5 times the minimum solvent is used when: - a- b- Cross-current is to be extracted. b- Counter-current is to be extracted.arrow_forwarduse Graphically 1000 Kg/hr on an acetone water mixture containing 10% of acetone is to be extracted with trichloroethane. The recovered solvent to be used is free of acetone. If 95% recovery of acetone is desired, the equilibrium relationship is given by kg acetone/kg trichloroethane 1.65 kg acetone/kg water. Estimate the number of stages required if 1.5 times the minimum solvent is used when: - Cross-current is to be extracted. a- b- b- Counter-current is to be extracted.arrow_forward
- A solution of 5% acetaldehyde in toluene is to be extracted with water in five stage co-current operation. If 25kg/100kg feed is used, what is the mass of acetaldehyde extracted and the final concentration? The Equilibrium relation is given by: kg acetaldehyde /kg water = 2.2 kg acetaldehyde / kg toluene.arrow_forwardFeed mixture weighing 200 kg of unknown composition containing water, acetic acid, isopropyl ether is contacted in a single stage with 280kg mixture containing 40wt% acetic acid. 10wt% water and 50wt% isopropyl ether. The resulting raffinate layer weight 320 kg and containing 29.5wt% acetic acid, 66.5 wt% water and 4wt% isopropyl ether. Determine the composition of the original feed mixture and the extract layer Water layer Isopropyl ether layer acetic acid water Isopropyl ether acetic acid water Isopropyl ether 0 98.8 1.2 0 0.6 99.4 0.69 98.1 1.2 0.18 0.5 99.3 1.41 97.1 1.5 0.37 0.7 98.9 2.89 95.5 1.6 0.79 0.8 98.4 6.42 91.7 1.9 1.93 1 97.1 13.3 84.4 2.3 4.82 1.9 93.3 25.5 71.1 3.4 11.4 3.9 84.7 36.7 58.9 4.4 21.6 6.9 71.5 44.3 5.1 10.6 31.1 10.8 58.5 46.4 37.1 16.5 36.2 15.1 48.7arrow_forward2000 Kg/hr on an acetone water mixture containing 10% of acetone is to be extracted with trichloroethane. The recovered solvent to be used is free of acetone. If 95% recovery of acetone is desired, the equilibrium relationship is given by kg acetone/kg trichloroethane 1.65 kg acetone/kg water. Estimate the number of stages required if 1.5 times the minimum solvent is used when: - a- Cross-current is to be extracted. b- b- Counter-current is to be extracted.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
General Mole Balance Equation // Reactor Engineering - Class 4; Author: Chemical Engineering Guy;https://www.youtube.com/watch?v=OYBhLfX0DYE;License: Standard YouTube License, CC-BY
Reactor Engineering 03 - Mole Balances; Author: Randhir Rawatlal;https://www.youtube.com/watch?v=KzmMTJHgjgM;License: Standard Youtube License