Concept explainers
The composition of pennies has changed over the years, depending on a number of factors, including the availability of various metals. A penny minted in 1825 was pure copper; a penny minted in 1860 was 88 percent copper and 12 percent nickel; a penny minted in 1965 was 95 percent copper and 5 percent zinc; and a penny minted today is 97.5 percent zinc and 2.5 percent copper. Given that the densities of copper, nickel, and zinc are 8.92 g/cm3, 8.91 g/cm3, and 7.14 g/cm3, respectively, determine the density of each penny.
Interpretation: From the given data, density of each penny should be determined.
Concept introduction:
Answer to Problem 1.116QP
Explanation of Solution
The density of penny minted in 1825
A penny minted in 1825 was pure copper. Therefore, the density of penny was that of copper. The density of copper was
The density of penny minted in 1860
A penny minted in 1860 was 88 percent copper and 12 percent nickel. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case on 1860,
So, the density of penny can be calculated as follows;
The density of penny minted in 1965
A penny minted in 1965 was 95 percent copper and 5 percent zinc. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case on 1965,
So, the density of penny can be calculated as follows;
The density of penny minted today
A penny minted today is 97.5 percent zinc and 2.5 percent copper. The density of the penny can be calculated using the weight percentages of each element and the densities of element. Here in the case,
So, the density of penny can be calculated as follows;
From the given data, density of each penny is determined.
Want to see more full solutions like this?
Chapter 1 Solutions
GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
- Don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15% glycerin by weight. If the original charge is 500 kg, evaluate; e. The ratio of sucrose to water in the original charge (wt/wt). f. Moles of CO2 evolved. g. Maximum possible amount of ethanol that could be formed. h. Conversion efficiency. i. Per cent excess of excess reactant. Reactions: Inversion reaction: C12H22O11 + H2O →2C6H12O6 Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2 Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3arrow_forward
- Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. cleavage Bond A •CH3 + 26.← Cleavage 2°C. + Bond C +3°C• CH3 2C Cleavage E 2°C. 26. weakest bond Intact molecule Strongest 3°C 20. Gund Largest argest a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. C Weakest bond A Produces Most Bond Strongest Bond Strongest Gund produces least stable radicals Weakest Stable radical b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 13°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. • CH3 methyl radical Formed in Gund A Cleavage c.…arrow_forwardBr. COOH Br, FCH COOH E FeBr ASOCI B NH (CH,CO),OD Br₂ 2 C alcKOHarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning