(a) Interpretation: The density of lignum vitae sphere is to be determined. Concept introduction: The density of any object is obtained when the mass of object in grams is divided by volume of an object in milliliters. So it is denoted by unit: gram per milliliter. Density is directly associated to the mass of an object. The higher the mass of the substance higher will be its density. Density is inversely associated to the volume of a substance. The lower the volume of the substance higher will be its density. Density is associated to how the particles are packed in a substance, which in turn determines its state. The state of a substance defines density. Solids have highest and gases have least density.
(a) Interpretation: The density of lignum vitae sphere is to be determined. Concept introduction: The density of any object is obtained when the mass of object in grams is divided by volume of an object in milliliters. So it is denoted by unit: gram per milliliter. Density is directly associated to the mass of an object. The higher the mass of the substance higher will be its density. Density is inversely associated to the volume of a substance. The lower the volume of the substance higher will be its density. Density is associated to how the particles are packed in a substance, which in turn determines its state. The state of a substance defines density. Solids have highest and gases have least density.
The density of lignum vitae sphere is to be determined.
Concept introduction:
The density of any object is obtained when the mass of object in grams is divided by volume of an object in milliliters. So it is denoted by unit: gram per milliliter.
Density is directly associated to the mass of an object. The higher the mass of the substance higher will be its density. Density is inversely associated to the volume of a substance. The lower the volume of the substance higher will be its density.
Density is associated to how the particles are packed in a substance, which in turn determines its state. The state of a substance defines density. Solids have highest and gases have least density.
Interpretation Introduction
(b)
Interpretation:
Whether the sphere will float or sink in water should be determined.
Concept introduction:
The density of any object is obtained when the mass of object in grams is divided by volume of an object in milliliters. So it is denoted by unit: gram per milliliter.
Density is directly associated to the mass of an object. The higher the mass of the substance higher will be its density. Density is inversely associated to the volume of a substance. The lower the volume of the substance higher will be its density.
Density is associated to how the particles are packed in a substance, which in turn determines its state. The state of a substance defines density. Solids have highest and gases have least density.
Interpretation Introduction
(c)
Interpretation:
Whether the sphere will float or sink in chloroform should be determined.
Concept introduction:
The density of any object is obtained when the mass of object in grams is divided by volume of an object in milliliters. So it is denoted by unit: gram per milliliter.
Density is directly associated to the mass of an object. The higher the mass of the substance higher will be its density. Density is inversely associated to the volume of a substance. The lower the volume of the substance higher will be its density.
Density is associated to how the particles are packed in a substance, which in turn determines its state. The state of a substance defines density. Solids have highest density and gases have least density.
3) The following molecule, chloral is a common precursor to chloral hydrate, an acetal type
molecule that was a first-generation anesthetic. Draw a mechanism that accounts for tis
formation and speculate why it does not require the use of an acid catalyst, like most
hemiacetal and acetal reaction: (10 pts)
H
H₂O
You are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits.
The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder.
The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g.
QUESTION: Your organisation strives to ensure that >99.97% of bags of umami powder produced conforms to specification. What performance process index value is required to achieve this process yield?
Calculate PPK using the following formula:
Ppk = (USL – mean)/3 σ
Ppk = (mean -LSL)/ 3 σ
You are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits.
The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder.
The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g.
QUESTION: Provide a valid and full justification as to whether you would advise your manager that the process is satisfactory when it is properly adjusted, or would you seek their approval to improve the process?