(a)
To prove : The quotient of an even function and an odd function is an odd function.
(a)
Explanation of Solution
Given information :
The quotient of an even function and an odd function
Formula used :
If a function is even then
Proof:
Suppose that we have an even function
Then,
And we have another function
Then,
Now
Hence we can say that the quotient of an even function and an odd function is an odd function.
(b)
To prove:
(b)
Explanation of Solution
Given information :
Formula used :
If a function is odd then
Proof:
Let
Then
Hence,
Chapter 0 Solutions
CALCULUS:GRAPHICAL,...,AP ED.-W/ACCESS
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning