df 12345 61899 HOBHS 7 0.20 0.10 0.05 3.078 6.314 12.706 1.886 2.920 4.303 1.638 2.353 3.182 1.533 2.132 2.776 1.476 2015 1.440 1.943 1.415 1.895 1.397 1.860 1.383 1.833 10 1.372 1.812 80% 14 1.345 15 1.341 16 17 11 1.363 1.796 12 1.356 1.782 13 1.350 1.771 1.761 1.753 0.10 0.05 0.025 t Confidence interval 21 1.323 1.721 22 1.321 1.717 23 1.319 1.714 24 1.318 1.711 25 1.316 1.708 FERZE Confidence Intervals, c 90% 95% 98% 99% Level of Significance for One-Tailed Test, 0.01 0.005 Level of Significance for Two-Tailed Test, a 0.02 0.01 31.821 63.657 6.965 9.925 4.541 5.841 26 1.315 1.706 27 1.314 1.703 28 1.313 1.701 29 1.311 1.699 30 1.310 1.697 2.120 2.583 2.921 2.110 2.567 2.898 1.337 1.746 1.333 1.740 18 1.330 1.734 2.101 2.552 2.878 19 1.328 1.729 2.093 2.861 2.539 20 1.325 1.725 2.086 2.528 2.845 33 1.308 1.692 34 1.307 35 1.306 71 1.294 72 1.293 1.293 74 1.293 73 78 79 80 31 1.309 1.696 2.040 2.453 2.744 32 1.309 1.694 2.037 2.449 2.738 2.445 2.733 2.441 2.728 2.438 2.724 1.666 1.666 75 1.293 1.665 1.667 1.666 3.747 4.604 2.571 3.365 4.032 76 1.293 1.665 77 1.293 1.665 1.292 1.665 1.292 1.664 1.292 1.664 2.447 3.143 3.707 2.365 2.998 3.499 2.306 2.896 3.355 2.262 2.821 3.250 2.228 2.764 3.169 2.201 2.718 3.106 2.179 2.681 3.055 2.160 2.650 3.012 2.145 2.624 2.977 2.131 2.602 2.947 2.035 1.691 2.032 1.690 2.030 2.080 2.518 2.074 2.508 2.069 2.500 2.807 2.064 2.492 2.797 2.060 2.485 2.787 -t 0 Left-tailed test 2.056 2.479 2.779 2.052 2.473 2.771 2.048 2.467 2.763 2.045 2.462 2.756 2.042 2.457 2.750 1.994 1.993 1.993 1.993 1.992 1.992 1.991 1.991 1.990 1.990 81 1.292 1.664 1.990 82 1.292 1.664 1.989 1.292 1.663 83 84 1.292 1.663 85 1.292 1.663 1.989 1.988 2.831 2.819 2.375 2.374 2.374 2.373 2.373 1.989 2.372 2.376 2.642 2.376 2.641 99.9% 2.638 2.637 2.636 2.372 2.636 2.371 2.635 0.0005 0.001 636.619 31.599 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 2.380 2.647 3.433 2.379 2.646 3.431 2.379 2.645 3.429 2.378 2.644 3.427 2.377 2.643 3.425 3.819 3.792 3.768 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.633 3.622 3.611 3.601 3.591 3.423 3.421 2.640 3.420 2.640 3.418 2.639 3.416 3.415 3.413 3.412 3.410 3.409 86 1.291 1.663 1.988 2.370 2.634 3.407 87 1.291 1.663 1.988 2.370 2.634 3.406 88 1.291 1.662 1.987 2.369 2.633 3.405 df 0 t Right-tailed test Confidence Intervals, c 90% 95% 98% 99% Level of Significance for One-Tailed Test, a 0.05 0.025 0.01 0.005 Level of Significance for Two-Tailed Test, a 0.20 0.10 0.05 0.02 0.01 36 1.306 1.688 2.028 2.434 2.719 2.431 2.715 37 1.305 1.687 2.026 38 1.304 1.686 2.024 2.429 2.023 2.426 39 1.304 1.685 40 1.303 1.684 2.021 2.423 80% 0.10 41 1.303 1.683 42 1.302 1.682 43 1.302 1.681 44 1.301 1.680 45 1.301 1.679 56 57 61 1.296 1.670 62 1.295 1.670 63 1.295 1.669 64 1.295 65 1.295 46 1.300 1.679 2.013 2.410 47 1.300 1.678 2012 48 1.299 1.677 2011 49 1.299 1.677 2.010 50 1.299 1.676 2.009 1.669 1.669 1.295 1.668 1.294 1.668 66 67 68 1.294 1.668 69 1.294 1.667 70 1.294 1.667 89 1.291 1.662 90 1.291 1.662 2.020 2018 2017 2015 2014 51 1.298 1.675 2.008 2.402 2.676 52 1.298 1.675 2.007 2.400 2,674 2.399 2.672 53 1.298 1.674 2.006 54 1.297 1.674 2.005 2.397 2.670 55 1.297 1.673 2.004 2.396 2.668 2.003 2.395 2.667 2.002 2.394 2.665 2.002 2.392 2.663 1.297 1.673 1.297 1.672 1.296 1.672 59 1.296 1.671 2.001 2.391 58 2.662 60 1.296 1.671 2.000 2.390 2.660 94 1.291 95 1.291 1.661 96 1.290 1.661 97 1.290 1.661 98 1.290 1.661 99 1.290 1.660 100 1.290 1.660 2.000 1.999 1.998 1.998 1.997 1.997 1.996 1.995 1.995 1.994 91 1.291 1.662 1.986 92 1.291 1.662 1.986 93 1.291 1.661 1.986 1.661 1.986 1.985 ta 1.987 1.987 1.985 1.985 1.984 1.984 1.984 2.421 2.701 2.418 2.698 2.416 2.695 2.414 2.692 2.412 2.690 2.408 2.407 2.405 2.403 -t 0 t Two-tailed test 2.712 2.708 2.704 2.369 2.368 2.389 2.659 2.388 2.657 2.387 2.656 2.386 2.655 2.385 2.654 2.368 2.368 2.367 2.367 2.366 2.687 2.685 2.682 2.680 2.678 2.384 2.383 2.382 2.382 2.381 2.648 2.366 2.365 2.652 2.651 2.650 2.649 2.632 2.632 2.628 2.627 2.365 2.627 2.365 2.626 2.364 2.626 2.358 2.617 120 1.289 1.658 140 1.288 1.656 1.980 1.977 2.353 2.611 2.350 2.607 160 1.287 1.654 1.975 180 1.286 1.653 1.973 2.347 2.603 200 1.286 1.653 1.972 2.345 1.282 1.645 1.960 2.326 2.601 2.576 99.9% B 0.0005 0.001 3.582 3.574 3.566 3.558 3.551 3.544 3.538 3.532 3.526 3.520 3.515 3.510 3.505 3.500 3.496 3.492 3.488 3.484 3.480 3.476 3.473 3.470 3.466 3.463 3.460 2.631 3.401 2.630 3.399 2.630 3.398 2.629 2.629 3.457 3.454 3.452 3.449 3.447 3.444 3.442 3.439 3.437 3.435 3.403 3.402 3.397 3.396 3.395 3.394 3.393 3.392 3.390 3.373 3.361 3.352 3.345 3.340 3.291 Z 0.0 0.1 0.2 0.3 0.4 - 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 0.00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 0.4192 0.4332 0.4452 0.4554 0.4641 0.4713 0.4772 0.4821 0.4861 0.4893 0.4918 0.4938 0.4953 0.4965 0.4974 0.4981 0.4987 0.01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 0.4207 0.4345 0.4463 0.4564 0.4649 0.4719 0.4778 0.4826 0.4864 0.4896 0.4920 0.4940 0.4955 0.4966 0.4975 0.4982 0.4987 ACILIPIC If z = 1.96, then P(0 to z) = 0.4750 0.02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 0.4222 0.4357 0.4474 0.4573 0.4656 0.4726 0.4783 0.4830 0.4868 0.4898 0.4922 0.4941 0.4956 0.4967 0.4976 0.4982 0.4987 1- 0.03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 0.4236 0.4370 0.4484 0.4582 0.4664 0.4732 0.4788 0.4834 0.4871 0.4901 0.4925 0.4943 0.4957 0.4968 0.4977 0.4983 0.4988 0.04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 0.4251 0.4382 0.4495 0.4591 0.4671 0.4738 0.4793 0.4838 0.4875 0.4904 0.4927 0.4945 0.4959 0.4969 0.4977 0.4984 0.4988 0 0.4750 0.05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 0.4265 0.4394 0.4505 0.4599 0.4678 0.4744 0.4798 0.4842 0.4878 0.4906 0.4929 0.4946 0.4960 0.4970 0.4978 0.4984 0.4989 1.96 0.06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 0.4279 0.4406 0.4515 0.4608 0.4686 0.4750 0.4803 0.4846 0.4881 0.4909 0.4931 0.4948 0.4961 0.4971 0.4979 0.4985 0.4989 0.07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 0.4292 0.4418 0.4525 0.4616 0.4693 0.4756 0.4808 0.4850 0.4884 0.4911 0.4932 0.4949 0.4962 0.4972 0.4979 0.4985 0.4989 0.08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 0.4306 0.4429 0.4535 0.4625 0.4699 0.4761 0.4812 0.4854 0.4887 0.4913 0.4934 0.4951 0.4963 0.4973 0.4980 0.4986 0.4990 0.09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4441 0.4545 0.4633 0.4706 0.4767 0.4817 0.4857 0.4890 0.4916 0.4936 0.4952 0.4964 0.4974 0.4981 0.4986 0.4990
df 12345 61899 HOBHS 7 0.20 0.10 0.05 3.078 6.314 12.706 1.886 2.920 4.303 1.638 2.353 3.182 1.533 2.132 2.776 1.476 2015 1.440 1.943 1.415 1.895 1.397 1.860 1.383 1.833 10 1.372 1.812 80% 14 1.345 15 1.341 16 17 11 1.363 1.796 12 1.356 1.782 13 1.350 1.771 1.761 1.753 0.10 0.05 0.025 t Confidence interval 21 1.323 1.721 22 1.321 1.717 23 1.319 1.714 24 1.318 1.711 25 1.316 1.708 FERZE Confidence Intervals, c 90% 95% 98% 99% Level of Significance for One-Tailed Test, 0.01 0.005 Level of Significance for Two-Tailed Test, a 0.02 0.01 31.821 63.657 6.965 9.925 4.541 5.841 26 1.315 1.706 27 1.314 1.703 28 1.313 1.701 29 1.311 1.699 30 1.310 1.697 2.120 2.583 2.921 2.110 2.567 2.898 1.337 1.746 1.333 1.740 18 1.330 1.734 2.101 2.552 2.878 19 1.328 1.729 2.093 2.861 2.539 20 1.325 1.725 2.086 2.528 2.845 33 1.308 1.692 34 1.307 35 1.306 71 1.294 72 1.293 1.293 74 1.293 73 78 79 80 31 1.309 1.696 2.040 2.453 2.744 32 1.309 1.694 2.037 2.449 2.738 2.445 2.733 2.441 2.728 2.438 2.724 1.666 1.666 75 1.293 1.665 1.667 1.666 3.747 4.604 2.571 3.365 4.032 76 1.293 1.665 77 1.293 1.665 1.292 1.665 1.292 1.664 1.292 1.664 2.447 3.143 3.707 2.365 2.998 3.499 2.306 2.896 3.355 2.262 2.821 3.250 2.228 2.764 3.169 2.201 2.718 3.106 2.179 2.681 3.055 2.160 2.650 3.012 2.145 2.624 2.977 2.131 2.602 2.947 2.035 1.691 2.032 1.690 2.030 2.080 2.518 2.074 2.508 2.069 2.500 2.807 2.064 2.492 2.797 2.060 2.485 2.787 -t 0 Left-tailed test 2.056 2.479 2.779 2.052 2.473 2.771 2.048 2.467 2.763 2.045 2.462 2.756 2.042 2.457 2.750 1.994 1.993 1.993 1.993 1.992 1.992 1.991 1.991 1.990 1.990 81 1.292 1.664 1.990 82 1.292 1.664 1.989 1.292 1.663 83 84 1.292 1.663 85 1.292 1.663 1.989 1.988 2.831 2.819 2.375 2.374 2.374 2.373 2.373 1.989 2.372 2.376 2.642 2.376 2.641 99.9% 2.638 2.637 2.636 2.372 2.636 2.371 2.635 0.0005 0.001 636.619 31.599 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 2.380 2.647 3.433 2.379 2.646 3.431 2.379 2.645 3.429 2.378 2.644 3.427 2.377 2.643 3.425 3.819 3.792 3.768 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.633 3.622 3.611 3.601 3.591 3.423 3.421 2.640 3.420 2.640 3.418 2.639 3.416 3.415 3.413 3.412 3.410 3.409 86 1.291 1.663 1.988 2.370 2.634 3.407 87 1.291 1.663 1.988 2.370 2.634 3.406 88 1.291 1.662 1.987 2.369 2.633 3.405 df 0 t Right-tailed test Confidence Intervals, c 90% 95% 98% 99% Level of Significance for One-Tailed Test, a 0.05 0.025 0.01 0.005 Level of Significance for Two-Tailed Test, a 0.20 0.10 0.05 0.02 0.01 36 1.306 1.688 2.028 2.434 2.719 2.431 2.715 37 1.305 1.687 2.026 38 1.304 1.686 2.024 2.429 2.023 2.426 39 1.304 1.685 40 1.303 1.684 2.021 2.423 80% 0.10 41 1.303 1.683 42 1.302 1.682 43 1.302 1.681 44 1.301 1.680 45 1.301 1.679 56 57 61 1.296 1.670 62 1.295 1.670 63 1.295 1.669 64 1.295 65 1.295 46 1.300 1.679 2.013 2.410 47 1.300 1.678 2012 48 1.299 1.677 2011 49 1.299 1.677 2.010 50 1.299 1.676 2.009 1.669 1.669 1.295 1.668 1.294 1.668 66 67 68 1.294 1.668 69 1.294 1.667 70 1.294 1.667 89 1.291 1.662 90 1.291 1.662 2.020 2018 2017 2015 2014 51 1.298 1.675 2.008 2.402 2.676 52 1.298 1.675 2.007 2.400 2,674 2.399 2.672 53 1.298 1.674 2.006 54 1.297 1.674 2.005 2.397 2.670 55 1.297 1.673 2.004 2.396 2.668 2.003 2.395 2.667 2.002 2.394 2.665 2.002 2.392 2.663 1.297 1.673 1.297 1.672 1.296 1.672 59 1.296 1.671 2.001 2.391 58 2.662 60 1.296 1.671 2.000 2.390 2.660 94 1.291 95 1.291 1.661 96 1.290 1.661 97 1.290 1.661 98 1.290 1.661 99 1.290 1.660 100 1.290 1.660 2.000 1.999 1.998 1.998 1.997 1.997 1.996 1.995 1.995 1.994 91 1.291 1.662 1.986 92 1.291 1.662 1.986 93 1.291 1.661 1.986 1.661 1.986 1.985 ta 1.987 1.987 1.985 1.985 1.984 1.984 1.984 2.421 2.701 2.418 2.698 2.416 2.695 2.414 2.692 2.412 2.690 2.408 2.407 2.405 2.403 -t 0 t Two-tailed test 2.712 2.708 2.704 2.369 2.368 2.389 2.659 2.388 2.657 2.387 2.656 2.386 2.655 2.385 2.654 2.368 2.368 2.367 2.367 2.366 2.687 2.685 2.682 2.680 2.678 2.384 2.383 2.382 2.382 2.381 2.648 2.366 2.365 2.652 2.651 2.650 2.649 2.632 2.632 2.628 2.627 2.365 2.627 2.365 2.626 2.364 2.626 2.358 2.617 120 1.289 1.658 140 1.288 1.656 1.980 1.977 2.353 2.611 2.350 2.607 160 1.287 1.654 1.975 180 1.286 1.653 1.973 2.347 2.603 200 1.286 1.653 1.972 2.345 1.282 1.645 1.960 2.326 2.601 2.576 99.9% B 0.0005 0.001 3.582 3.574 3.566 3.558 3.551 3.544 3.538 3.532 3.526 3.520 3.515 3.510 3.505 3.500 3.496 3.492 3.488 3.484 3.480 3.476 3.473 3.470 3.466 3.463 3.460 2.631 3.401 2.630 3.399 2.630 3.398 2.629 2.629 3.457 3.454 3.452 3.449 3.447 3.444 3.442 3.439 3.437 3.435 3.403 3.402 3.397 3.396 3.395 3.394 3.393 3.392 3.390 3.373 3.361 3.352 3.345 3.340 3.291 Z 0.0 0.1 0.2 0.3 0.4 - 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 0.00 0.0000 0.0398 0.0793 0.1179 0.1554 0.1915 0.2257 0.2580 0.2881 0.3159 0.3413 0.3643 0.3849 0.4032 0.4192 0.4332 0.4452 0.4554 0.4641 0.4713 0.4772 0.4821 0.4861 0.4893 0.4918 0.4938 0.4953 0.4965 0.4974 0.4981 0.4987 0.01 0.0040 0.0438 0.0832 0.1217 0.1591 0.1950 0.2291 0.2611 0.2910 0.3186 0.3438 0.3665 0.3869 0.4049 0.4207 0.4345 0.4463 0.4564 0.4649 0.4719 0.4778 0.4826 0.4864 0.4896 0.4920 0.4940 0.4955 0.4966 0.4975 0.4982 0.4987 ACILIPIC If z = 1.96, then P(0 to z) = 0.4750 0.02 0.0080 0.0478 0.0871 0.1255 0.1628 0.1985 0.2324 0.2642 0.2939 0.3212 0.3461 0.3686 0.3888 0.4066 0.4222 0.4357 0.4474 0.4573 0.4656 0.4726 0.4783 0.4830 0.4868 0.4898 0.4922 0.4941 0.4956 0.4967 0.4976 0.4982 0.4987 1- 0.03 0.0120 0.0517 0.0910 0.1293 0.1664 0.2019 0.2357 0.2673 0.2967 0.3238 0.3485 0.3708 0.3907 0.4082 0.4236 0.4370 0.4484 0.4582 0.4664 0.4732 0.4788 0.4834 0.4871 0.4901 0.4925 0.4943 0.4957 0.4968 0.4977 0.4983 0.4988 0.04 0.0160 0.0557 0.0948 0.1331 0.1700 0.2054 0.2389 0.2704 0.2995 0.3264 0.3508 0.3729 0.3925 0.4099 0.4251 0.4382 0.4495 0.4591 0.4671 0.4738 0.4793 0.4838 0.4875 0.4904 0.4927 0.4945 0.4959 0.4969 0.4977 0.4984 0.4988 0 0.4750 0.05 0.0199 0.0596 0.0987 0.1368 0.1736 0.2088 0.2422 0.2734 0.3023 0.3289 0.3531 0.3749 0.3944 0.4115 0.4265 0.4394 0.4505 0.4599 0.4678 0.4744 0.4798 0.4842 0.4878 0.4906 0.4929 0.4946 0.4960 0.4970 0.4978 0.4984 0.4989 1.96 0.06 0.0239 0.0636 0.1026 0.1406 0.1772 0.2123 0.2454 0.2764 0.3051 0.3315 0.3554 0.3770 0.3962 0.4131 0.4279 0.4406 0.4515 0.4608 0.4686 0.4750 0.4803 0.4846 0.4881 0.4909 0.4931 0.4948 0.4961 0.4971 0.4979 0.4985 0.4989 0.07 0.0279 0.0675 0.1064 0.1443 0.1808 0.2157 0.2486 0.2794 0.3078 0.3340 0.3577 0.3790 0.3980 0.4147 0.4292 0.4418 0.4525 0.4616 0.4693 0.4756 0.4808 0.4850 0.4884 0.4911 0.4932 0.4949 0.4962 0.4972 0.4979 0.4985 0.4989 0.08 0.0319 0.0714 0.1103 0.1480 0.1844 0.2190 0.2517 0.2823 0.3106 0.3365 0.3599 0.3810 0.3997 0.4162 0.4306 0.4429 0.4535 0.4625 0.4699 0.4761 0.4812 0.4854 0.4887 0.4913 0.4934 0.4951 0.4963 0.4973 0.4980 0.4986 0.4990 0.09 0.0359 0.0753 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4441 0.4545 0.4633 0.4706 0.4767 0.4817 0.4857 0.4890 0.4916 0.4936 0.4952 0.4964 0.4974 0.4981 0.4986 0.4990
Related questions
Question
You wish to estimate the mean number of travel days per year for salespeople. The mean of a small pilot study was 150 days, with a standard deviation of 38 days.
If you want to estimate the population mean with 95% confidence and a margin of error of 9 days, how many salespeople should you sample?
(Use t Distribution Table & z Distribution Table.) (Round z value to 3 decimal places and round your answer to the next whole number.)
What is the number of salespeople to be sampled?
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution