You wish to cool a 1.59 kg block of tin initially at 96.0°C to a temperature of 57.0°C by placing it in a container of kerosene initially at 28.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of kerosene are respectively 820 kg/m³ and 2,010 J/(kg °C), and the specific heat of tin is 218 J/(kg °C). L Need Help? Read It
You wish to cool a 1.59 kg block of tin initially at 96.0°C to a temperature of 57.0°C by placing it in a container of kerosene initially at 28.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of kerosene are respectively 820 kg/m³ and 2,010 J/(kg °C), and the specific heat of tin is 218 J/(kg °C). L Need Help? Read It
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question

Transcribed Image Text:You wish to cool a 1.59 kg block of tin initially at 96.0°C to a temperature of 57.0°C by placing it in a container of kerosene
initially at 28.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density
and specific heat of kerosene are respectively 820 kg/m³ and 2,010 J/(kg °C), and the specific heat of tin is 218 J/(kg °C).
L
Need Help?
Read It
Expert Solution

Given data
Given data :
Mass of tin ( m1 ) = 1.59 kg
Initial temperature of tin ( T1 ) = 96.0 °C
Final temperature ( T ) = 57.0 °C
Initial temperature of kerosene ( T2 ) = 28.0 °C
Density of kerosene ( ρ ) = 820 kg/m3
Specific heat capacity of kerosene ( c2 ) = 2010 J/(kg.°C)
Specific heat capacity of tin ( c1 ) = 218 J/(kg.°C)
To find :
Let mass of kerosene is m2
Volume of kerosene is V
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON