You solve a non-singular system of 10,000 linear equations with 10,000 unknowns using the Gauss-Jordan algorithm without pivoting with single precision numbers and arithmetics on a computer that natively can do single precision operations very fast, but can operate in double and half precision as well. Your solution has a residual infinity-norm that is unacceptably large. In which order should you apply the following strategies to lower the residual norm? If a strategy is not / no longer helpful, do not list it as an option. a) use half precision numbers and arithmetics instead of single precision; b) use double precision numbers and arithmetics instead of single precision; c) use partial pivoting; d) use pivoting when encountering a zero in the pivot position.
You solve a non-singular system of 10,000 linear equations with 10,000 unknowns using the Gauss-Jordan algorithm without pivoting with single precision numbers and arithmetics on a computer that natively can do single precision operations very fast, but can operate in double and half precision as well. Your solution has a residual infinity-norm that is unacceptably large. In which order should you apply the following strategies to lower the residual norm? If a strategy is not / no longer helpful, do not list it as an option.
a) use half precision numbers and arithmetics instead of single precision;
b) use double precision numbers and arithmetics instead of single precision; c) use partial pivoting;
d) use pivoting when encountering a zero in the pivot position.
Step by step
Solved in 3 steps