You are working for the summer at a research laboratory. Your research director has devised a scheme for holding small charged particles at fixed positions. The scheme is shown in the figure below. An insulating cylinder of radius a and length L ≫ a is positively charged and carries a uniform volume charge density ρ. A very thin tunnel is drilled through a diameter of the cylinder and two small spheres with charge q are placed in the tunnel. These spheres are represented by the blue dots in the figure. They find equilibrium positions at a distance of r on opposite sides of the axis of the cylinder. Your research director has had great success with this scheme. Determine the specific value of r at which equilibrium exists. (Use the following as necessary: q and ρ.)
You are working for the summer at a research laboratory. Your research director has devised a scheme for holding small charged particles at fixed positions. The scheme is shown in the figure below. An insulating cylinder of radius a and length L ≫ a is positively charged and carries a uniform volume charge density ρ. A very thin tunnel is drilled through a diameter of the cylinder and two small spheres with charge q are placed in the tunnel. These spheres are represented by the blue dots in the figure. They find equilibrium positions at a distance of r on opposite sides of the axis of the cylinder. Your research director has had great success with this scheme. Determine the specific value of r at which equilibrium exists. (Use the following as necessary: q and ρ.)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 4 images