+ y = e In t 16. 2y" + 2y' + y = 4Vx 17 3x" 6y' + 6y = e* sec r

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve #16 by using variation of parameters
**Chapter 4: Higher-Order Differential Equations**

Here are several differential equations for practice and study:

11. \( y'' + 3y' + 2y = \frac{1}{1 + e^x} \)

12. \( y'' - 2y' + y = \frac{e^x}{1 + x^2} \)

13. \( y'' + 3y' + 2y = \sin e^x \)

14. \( y'' - 2y' + y = e^t \arctan t \)

15. \( y'' + y = e^{-t} \ln t \)

16. \( 2y'' + 2y' + y = 4\sqrt{x} \)

17. \( 3y'' - 6y' + 6y = e^x \sec x \)

18. \( 4y'' - 4y' + y = e^{x/2} \sqrt{1 - x^2} \)

**Problems 19-22:**

For these problems, solve each differential equation using the method of variation of parameters, with the initial conditions \( y(0) = 1 \) and \( y'(0) = 0 \).

19. \( 4y'' - y = xe^{x/2} \)

20. \( 2y'' + y' - y = x + 1 \)
Transcribed Image Text:**Chapter 4: Higher-Order Differential Equations** Here are several differential equations for practice and study: 11. \( y'' + 3y' + 2y = \frac{1}{1 + e^x} \) 12. \( y'' - 2y' + y = \frac{e^x}{1 + x^2} \) 13. \( y'' + 3y' + 2y = \sin e^x \) 14. \( y'' - 2y' + y = e^t \arctan t \) 15. \( y'' + y = e^{-t} \ln t \) 16. \( 2y'' + 2y' + y = 4\sqrt{x} \) 17. \( 3y'' - 6y' + 6y = e^x \sec x \) 18. \( 4y'' - 4y' + y = e^{x/2} \sqrt{1 - x^2} \) **Problems 19-22:** For these problems, solve each differential equation using the method of variation of parameters, with the initial conditions \( y(0) = 1 \) and \( y'(0) = 0 \). 19. \( 4y'' - y = xe^{x/2} \) 20. \( 2y'' + y' - y = x + 1 \)
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,