xplain the code below in a step-by-step manner. Also explain what the two join statements intend to achieve. emp = [(1,"Smith",-1,"2018","10","M",3000), \ (2,"Rose",1,"2010","20","M",4000), \ (3,"Williams",1,"2010","10","M",1000), \ (4,"Jones",2,"2005","10","F",2000), \ ] empColumns = ["emp_id","name","superior_emp_id","year_joined", \ "emp_dept_id","gender","salary"] empDF = spark.createDataFrame(data=emp, schema = empColumns) empDF.printSchema() empDF.show(truncate=False) dept = [("Finance",10), \ ("Marketing",20), \ ("Sales",30), \ ("IT",40) \ ] deptColumns = ["dept_name","dept_id"] deptDF = spark.createDataFrame(data=dept, schema = deptColumns) deptDF.printSchema() deptDF.show(truncate=False) # Join statement 1 empDF.join(deptDF,empDF.emp_dept_id == deptDF.dept_id,"outer") \ .show(truncate=False) # Join statement 2 empDF.join(deptDF,empDF.emp_dept_id == deptDF.dept_id,"right") \ .show(truncate=False)
xplain the code below in a step-by-step manner. Also explain what the two join statements intend to achieve.
emp = [(1,"Smith",-1,"2018","10","M",3000), \
(2,"Rose",1,"2010","20","M",4000), \
(3,"Williams",1,"2010","10","M",1000), \
(4,"Jones",2,"2005","10","F",2000), \
]
empColumns = ["emp_id","name","superior_emp_id","year_joined", \
"emp_dept_id","gender","salary"]
empDF = spark.createDataFrame(data=emp, schema = empColumns)
empDF.printSchema()
empDF.show(truncate=False)
dept = [("Finance",10), \
("Marketing",20), \
("Sales",30), \
("IT",40) \
]
deptColumns = ["dept_name","dept_id"]
deptDF = spark.createDataFrame(data=dept, schema = deptColumns)
deptDF.printSchema()
deptDF.show(truncate=False)
# Join statement 1
empDF.join(deptDF,empDF.emp_dept_id == deptDF.dept_id,"outer") \
.show(truncate=False)
# Join statement 2
empDF.join(deptDF,empDF.emp_dept_id == deptDF.dept_id,"right") \
.show(truncate=False)
emp = [(1,"Smith",-1,"2018","10","M",3000), \
(2,"Rose",1,"2010","20","M",4000), \
(3,"Williams",1,"2010","10","M",1000), \
(4,"Jones",2,"2005","10","F",2000), \
]
empColumns = ["emp_id","name","superior_emp_id","year_joined", \
"emp_dept_id","gender","salary"]
empDF = spark.createDataFrame(data=emp, schema = empColumns)
empDF.printSchema()
empDF.show(truncate=False)
dept = [("Finance",10), \
("Marketing",20), \
("Sales",30), \
("IT",40) \
]
deptColumns = ["dept_name","dept_id"]
deptDF = spark.createDataFrame(data=dept, schema = deptColumns)
deptDF.printSchema()
deptDF.show(truncate=False)
This whole code prints emp and dept dataframe to conlsole.
Step by step
Solved in 2 steps