X6n-4 = 1 The following special case of Eq. (1) has been studied X6n-3 = X6n-1 = (8) where the initial conditions x-4, X-3, X-2, X-1,and zo are arbitrary non zero real numbers. Theorem 4. Let {n}-4 be a solution of Eq. (8). Then for n = 0, 1, 2, ... I6n = In+1 = αIn-2 + X6n-2 = T X6n+1 = X6n-9 = X6n-7 = n-1 hII X6n-6 i=0 n-1 k⇓I i=0 X6n-5 = n-1 PII i=0 n-1 II i=0 n-1 9 II i=0 X6n-8 = T n-2 k II i=0 n-2 ™II i=0 Bxn-1n-2 Yn-1 +6xn-4' = 9 n-2 PII i=0 n-2 In+1 = In-2 + i=0 In-1n-2 In-1 + In-4 foip+f6i-1h foi-1p+ foi-2h, where x_4 = h, x_3= k, x_2= r, x_1=p, xo = q, {fm}=-1 = {1,0, 1, 1, 2, 3, 5, 8, ...}. Proof: For n=0 the result holds. Now suppose that n > 0 and that our assumption holds for n 2. That is; h) (fi (f6i+4P+f6i+3h) f6i+3P + fei+2h, f6i+2p+f6i+1h) foi+1P + foih n-1 foi+8p+f6i+7h` 7 (²P + h) II (faisap + feir7h ) ( Sai+49 + Sei+3k) T f6i+39 +f6i+2k) i=0 n = 0, 1, ..., (f6i+49 + f6i+3k) foi+39 + foi+2k, (f6i+29+ foi+1k\ f6i+5p+f6i+4h) f6i+19+f6ik f6i+4P+f6i+3h) (f6i+69+f6i+5k foi+3p+f6i+2h/ f6i+59 + f6i+4k) f6i+29+f6i+1k) foi+19+f6ik (fai+2P + fei+¹h) ( n-2 r (2²p+h) ( T i=0 foiq+f6i-1k fei-19+f6i-2k f6i+4P+f6i+3h f6iq+f6i-1k foi+3p+f6i+2h, f6i-19 + foi-2k) Now, it follows from Eq. (8) that f6i+6p+f6i+5h) (f6i+29+f6i+1k) f6i+5P+f6i+4h, f6i+19+ foik f6i+4P+f6i+3h) (f6i+69+f6i+5k foi+3P+f6i+2h) f6i+59 + f6i+4k) X6n-4X6n-7 + (f6i+49 +f6i+3k \f6i+39 +f6i+2k, 7 f6i+8p+f6i+7h Joi+7p + feitch) (f6i+49 + foi+3h) f6i+39 + f6i+2k) X6n-66n-7 X6n-6 + X6n-9 (1) 7
X6n-4 = 1 The following special case of Eq. (1) has been studied X6n-3 = X6n-1 = (8) where the initial conditions x-4, X-3, X-2, X-1,and zo are arbitrary non zero real numbers. Theorem 4. Let {n}-4 be a solution of Eq. (8). Then for n = 0, 1, 2, ... I6n = In+1 = αIn-2 + X6n-2 = T X6n+1 = X6n-9 = X6n-7 = n-1 hII X6n-6 i=0 n-1 k⇓I i=0 X6n-5 = n-1 PII i=0 n-1 II i=0 n-1 9 II i=0 X6n-8 = T n-2 k II i=0 n-2 ™II i=0 Bxn-1n-2 Yn-1 +6xn-4' = 9 n-2 PII i=0 n-2 In+1 = In-2 + i=0 In-1n-2 In-1 + In-4 foip+f6i-1h foi-1p+ foi-2h, where x_4 = h, x_3= k, x_2= r, x_1=p, xo = q, {fm}=-1 = {1,0, 1, 1, 2, 3, 5, 8, ...}. Proof: For n=0 the result holds. Now suppose that n > 0 and that our assumption holds for n 2. That is; h) (fi (f6i+4P+f6i+3h) f6i+3P + fei+2h, f6i+2p+f6i+1h) foi+1P + foih n-1 foi+8p+f6i+7h` 7 (²P + h) II (faisap + feir7h ) ( Sai+49 + Sei+3k) T f6i+39 +f6i+2k) i=0 n = 0, 1, ..., (f6i+49 + f6i+3k) foi+39 + foi+2k, (f6i+29+ foi+1k\ f6i+5p+f6i+4h) f6i+19+f6ik f6i+4P+f6i+3h) (f6i+69+f6i+5k foi+3p+f6i+2h/ f6i+59 + f6i+4k) f6i+29+f6i+1k) foi+19+f6ik (fai+2P + fei+¹h) ( n-2 r (2²p+h) ( T i=0 foiq+f6i-1k fei-19+f6i-2k f6i+4P+f6i+3h f6iq+f6i-1k foi+3p+f6i+2h, f6i-19 + foi-2k) Now, it follows from Eq. (8) that f6i+6p+f6i+5h) (f6i+29+f6i+1k) f6i+5P+f6i+4h, f6i+19+ foik f6i+4P+f6i+3h) (f6i+69+f6i+5k foi+3P+f6i+2h) f6i+59 + f6i+4k) X6n-4X6n-7 + (f6i+49 +f6i+3k \f6i+39 +f6i+2k, 7 f6i+8p+f6i+7h Joi+7p + feitch) (f6i+49 + foi+3h) f6i+39 + f6i+2k) X6n-66n-7 X6n-6 + X6n-9 (1) 7
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show me the steps of determine red and information is here step by step. It complete
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,