∥x∥2 ≤ ∥x∥1 ≤ √n∥x∥2,
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
∥.∥1, ∥.∥2, and∥.∥∞ are norms on R.
Show the following relations for x∈R and thereby the called equivalence of norms:
a) ∥x∥2 ≤ ∥x∥1 ≤ √n∥x∥2,
I understand the first part of the solution(picture) that
∥x∥2 ≤ ∥x∥1. I am greatly struggeling to understand the solution of : ∥x∥1 ≤ √n∥x∥2.
Can somebody explain the solution to me?

Transcribed Image Text:a.) Es gilt:
da alle Mischterme auf der rechten
||||2 =
=
√√√x² + + x 2²/2 ≤ √(|x₁| + ··· +|xn|)² = |x1| + ··· + | Xxn| = ||*||1,
·
x ² + + x²³² ≤ (|x₁| +...+|xn|) ²
Seite positiv sind. Dies zeigt mithilfe der Wurzel:
also ||||2||||1₁. Auf der anderen Seite gilt:
|||||₁=(x₁,, |xn|)
und somit ||||1 ≤ √√n||x||2.
3
(|ux|'...'|¹x|) =
OFIQUIOL-
2
= √n||x||2
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

