∥x∥2 ≤ ∥x∥1 ≤ √n∥x∥2,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

∥.∥1, ∥.∥2, and∥.∥∞ are norms on R.
Show the following relations for x∈R and thereby the called equivalence of norms:

a)  ∥x∥2 ≤ ∥x∥1 ≤ √n∥x∥2,

I understand the first part of the solution(picture) that 

∥x∥2 ≤ ∥x∥1. I am greatly struggeling to understand the solution of :  ∥x∥1 ≤ √n∥x∥2.

Can somebody explain the solution to me?

a.) Es gilt:
da alle Mischterme auf der rechten
||||2 =
=
√√√x² + + x 2²/2 ≤ √(|x₁| + ··· +|xn|)² = |x1| + ··· + | Xxn| = ||*||1,
·
x ² + + x²³² ≤ (|x₁| +...+|xn|) ²
Seite positiv sind. Dies zeigt mithilfe der Wurzel:
also ||||2||||1₁. Auf der anderen Seite gilt:
|||||₁=(x₁,, |xn|)
und somit ||||1 ≤ √√n||x||2.
3
(|ux|'...'|¹x|) =
OFIQUIOL-
2
= √n||x||2
Transcribed Image Text:a.) Es gilt: da alle Mischterme auf der rechten ||||2 = = √√√x² + + x 2²/2 ≤ √(|x₁| + ··· +|xn|)² = |x1| + ··· + | Xxn| = ||*||1, · x ² + + x²³² ≤ (|x₁| +...+|xn|) ² Seite positiv sind. Dies zeigt mithilfe der Wurzel: also ||||2||||1₁. Auf der anderen Seite gilt: |||||₁=(x₁,, |xn|) und somit ||||1 ≤ √√n||x||2. 3 (|ux|'...'|¹x|) = OFIQUIOL- 2 = √n||x||2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,