(x+1)y''-(2-x)y'+y=0  y(0)=2, y'(0)=-1 What are the first six non zero terms of the power series?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(x+1)y''-(2-x)y'+y=0  y(0)=2, y'(0)=-1

What are the first six non zero terms of the power series?

Expert Solution
Step 1: We give the standard form of power series solution.

(.) Given differential equation is,

 open parentheses x plus 1 close parentheses y apostrophe apostrophe minus left parenthesis 2 minus x right parenthesis y apostrophe plus y equals 0 space space semicolon space space y left parenthesis 0 right parenthesis equals 2 space comma space y apostrophe left parenthesis 0 right parenthesis equals negative 1

(.)  Power series solution of a second order linear differential equation y apostrophe apostrophe plus P left parenthesis x right parenthesis y apostrophe plus Q left parenthesis x right parenthesis y equals 0 about an ordinary point x equals x subscript 0 is given by,

         y left parenthesis x right parenthesis space equals space sum from n equals 0 to infinity of a subscript n open parentheses x minus x subscript 0 close parentheses to the power of n

If P left parenthesis x right parenthesis and Q left parenthesis x right parenthesis are defined at x equals x subscript 0 then x subscript 0 is called an ordinary point.


steps

Step by step

Solved in 4 steps with 47 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,