X'= -13 -17 -2 10 14 - 10 - 10 - 13 - 17 -2 10 14 2x₁ - 3t H 2 x; x₁ = e 2 Flicid 11 3 -2, X₂ = e²¹ 2 system. -1 1 4t X3 = e 13 -17 -2 3e-3t 10 14 2 -2e-3t ==×₁' 1 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Verifying Linear Independence and General Solution of a System of Differential Equations**

**Objective:**
To verify that the given vectors are solutions of a given system of differential equations. Use the Wronskian to demonstrate their linear independence and finally, write the general solution of the system.

**Given System:**
\[ x' = \begin{bmatrix}
-13 & -17 & -2 \\
10 & 14 & 2 \\
-10 & -10 & 2 
\end{bmatrix} \cdot x \]

**Provided Solutions:**
\[ x_1 = e^{3t} \begin{bmatrix}
3 \\
-2 \\
2 
\end{bmatrix}, \quad x_2 = e^{2t} \begin{bmatrix}
1 \\
-1 \\
2 
\end{bmatrix}, \quad x_3 = e^{4t} \begin{bmatrix}
1 \\
-1 \\
0 
\end{bmatrix} \]

**Verification of Solutions:**
We will first confirm that these provided vectors are indeed solutions to the given differential system.

1. For \( x_1 \):
\[
\begin{bmatrix}
-13 & -17 & -2 \\
10 & 14 & 2 \\
-10 & -10 & 2 
\end{bmatrix} 
\begin{bmatrix}
3e^{3t} \\
-2e^{3t} \\
2e^{3t}
\end{bmatrix}
= 
\begin{bmatrix}
3e^{3t} \\
-2e^{3t} \\
2e^{3t}
\end{bmatrix}'
\]

**Explanation of Matrices:**

- The first matrix represents the coefficients in the system of differential equations.
- The vectors \( x_1, x_2, x_3 \) represent specific solutions multiplied by exponential terms \( e^{3t}, e^{2t}, e^{4t} \) respectively.

**Illustration with matrix multiplication for \( x_1 \):**

Verify \( x_1 \):
\[ 
\begin{bmatrix}
-13 & -17 & -2 \\
10 & 14 & 2 \\
-10 & -10 & 2 
\end{bmatrix}
\begin{bmatrix}
3e
Transcribed Image Text:**Verifying Linear Independence and General Solution of a System of Differential Equations** **Objective:** To verify that the given vectors are solutions of a given system of differential equations. Use the Wronskian to demonstrate their linear independence and finally, write the general solution of the system. **Given System:** \[ x' = \begin{bmatrix} -13 & -17 & -2 \\ 10 & 14 & 2 \\ -10 & -10 & 2 \end{bmatrix} \cdot x \] **Provided Solutions:** \[ x_1 = e^{3t} \begin{bmatrix} 3 \\ -2 \\ 2 \end{bmatrix}, \quad x_2 = e^{2t} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \quad x_3 = e^{4t} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \] **Verification of Solutions:** We will first confirm that these provided vectors are indeed solutions to the given differential system. 1. For \( x_1 \): \[ \begin{bmatrix} -13 & -17 & -2 \\ 10 & 14 & 2 \\ -10 & -10 & 2 \end{bmatrix} \begin{bmatrix} 3e^{3t} \\ -2e^{3t} \\ 2e^{3t} \end{bmatrix} = \begin{bmatrix} 3e^{3t} \\ -2e^{3t} \\ 2e^{3t} \end{bmatrix}' \] **Explanation of Matrices:** - The first matrix represents the coefficients in the system of differential equations. - The vectors \( x_1, x_2, x_3 \) represent specific solutions multiplied by exponential terms \( e^{3t}, e^{2t}, e^{4t} \) respectively. **Illustration with matrix multiplication for \( x_1 \):** Verify \( x_1 \): \[ \begin{bmatrix} -13 & -17 & -2 \\ 10 & 14 & 2 \\ -10 & -10 & 2 \end{bmatrix} \begin{bmatrix} 3e
Expert Solution
steps

Step by step

Solved in 5 steps with 12 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,