Write the complex numbers in Problems 13-32 in the form a + bi where a and b are real numbers. 13. (2- 6i) + (23 – 14i) JA. (7+ i)(2 – 5i) 5 15. 4+3i बर्षश 16. V-12
Write the complex numbers in Problems 13-32 in the form a + bi where a and b are real numbers. 13. (2- 6i) + (23 – 14i) JA. (7+ i)(2 – 5i) 5 15. 4+3i बर्षश 16. V-12
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:### Complex Numbers: Exercise on a + bi Form
#### Instructions
Write the complex numbers in Problems 13–32 in the form \( a + bi \) where \( a \) and \( b \) are real numbers.
---
#### Problems
1. \((2 - 6i) + (23 - 14i)\)
2. \((7 + i)(2 - 5i)\)
3. \(\frac{5}{4 + 3i}\)
4. \(\sqrt{-12}\)
5. \(\sqrt{-81} - \sqrt{-4}\)
6. \(3\sqrt{-25} - 4\sqrt{-64}\)
7. \(2\sqrt{-16} - 5\sqrt{-1}\)
8. \((7 + 5i) - (12 - 11i)\)
9. \((5 + 2i)^2\)
10. \(6(3 + 4i) - 2i(i + 5)\)
11. \(\frac{1 + 4i}{6 + 3i}\)
12. \((2 - 8i)(2 + 8i)\)
13. \(\frac{1}{4 - 5i}\)
14. \((3 + 8i) + 2(4 - 7i)\)
15. \((9 - 7i) - 3(5 + i)\)
#### Notes on Selected Problems
- **Problem 13**:
Expression: \((2 - 6i) + (23 - 14i)\)
- **Solution**: Combine real and imaginary parts separately.
- Real part: \(2 + 23 = 25\)
- Imaginary part: \(-6i - 14i = -20i\)
- **Result in \( a + bi \) form**: \(25 - 20i\)
- **Problem 14**:
Expression: \((7 + i)(2 - 5i)\)
- **Solution**: Expand using distributive property and combine like terms.
- First, distribute \( (7 + i) \):
\(7 \cdot 2 + 7 \cdot (-5i) + i \cdot 2 + i \cdot (-5i)\)
- Combine and simplify
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

