Women athletes at a certain university have a long-term graduation rate of 67%. Over the past several years, a random sample of 38 women athletes at the school showed that 23 eventually graduated. Does this indicate that the population proportion of women athletes who graduate from the university is now less than 67%? Use a 1% level of significance.   (a) What is the level of significance?   (b) State the null and alternate hypotheses. H0: p = 0.67; H1: p < 0.67H0: p = 0.67; H1: p > 0.67    H0: p < 0.67; H1: p = 0.67H0: p = 0.67; H1: p ≠ 0.67 What sampling distribution will you use? The standard normal, since np < 5 and nq < 5.The Student's t, since np > 5 and nq > 5.    The Student's t, since np < 5 and nq < 5.The standard normal, since np > 5 and nq > 5. What is the value of the sample test statistic? (Round your answer to two decimal places.)   (c) Find the P-value of the test statistic.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Women athletes at a certain university have a long-term graduation rate of 67%. Over the past several years, a random sample of 38 women athletes at the school showed that 23 eventually graduated. Does this indicate that the population proportion of women athletes who graduate from the university is now less than 67%? Use a 1% level of significance.
 
(a)
What is the level of significance?
 
(b)
State the null and alternate hypotheses.
H0p = 0.67; H1p < 0.67H0p = 0.67; H1p > 0.67    H0p < 0.67; H1p = 0.67H0p = 0.67; H1p ≠ 0.67
What sampling distribution will you use?
The standard normal, since np < 5 and nq < 5.The Student's t, since np > 5 and nq > 5.    The Student's t, since np < 5 and nq < 5.The standard normal, since np > 5 and nq > 5.
What is the value of the sample test statistic? (Round your answer to two decimal places.)
 
(c)
Find the P-value of the test statistic. (Round your answer to four decimal places.)
 
Sketch the sampling distribution and show the area corresponding to the P-value.
A plot of the standard normal probability curve has a horizontal axis with values from −3 to 3. The curve enters the window from the left, just above the horizontal axis, goes up and to the right, changes direction over approximately 0 on the horizontal axis, and then goes down and to the right before exiting the window just above the horizontal axis. The area under the curve between −0.85 and 3 is shaded.
 
A plot of the standard normal probability curve has a horizontal axis with values from −3 to 3. The curve enters the window from the left, just above the horizontal axis, goes up and to the right, changes direction over approximately 0 on the horizontal axis, and then goes down and to the right before exiting the window just above the horizontal axis. The area under the curve between −3 and −0.85 as well as the area under the curve between 0.85 and 3 are both shaded.
 
A plot of the standard normal probability curve has a horizontal axis with values from −3 to 3. The curve enters the window from the left, just above the horizontal axis, goes up and to the right, changes direction over approximately 0 on the horizontal axis, and then goes down and to the right before exiting the window just above the horizontal axis. The area under the curve between 0.85 and 3 is shaded.
 
A plot of the standard normal probability curve has a horizontal axis with values from −3 to 3. The curve enters the window from the left, just above the horizontal axis, goes up and to the right, changes direction over approximately 0 on the horizontal axis, and then goes down and to the right before exiting the window just above the horizontal axis. The area under the curve between −3 and −0.85 is shaded.
(d)
Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level ??
At the ? = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant.At the ? = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant.    At the ? = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant.At the ? = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
(e)
Interpret your conclusion in the context of the application.
There is sufficient evidence at the 0.01 level to conclude that the true proportion of women athletes who graduate is less than 0.67.There is insufficient evidence at the 0.01 level to conclude that the true proportion of women athletes who graduate is less than 0.67.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman