Wire manufactured by a company is tested for strength. The test gives a correct positive result with a probability of 0.85 when the wire is strong, but gives an incorrect positive result (false positive) with a probability of 0.04 when in fact the wire is not strong. If 98% of the wires are strong, and a wire chosen at random fails the test, what is the probability it really is not strong enough? * Please solve using Bayes' Theorem and explain completely. Thanks.
Wire manufactured by a company is tested for strength. The test gives a correct positive result with a probability of 0.85 when the wire is strong, but gives an incorrect positive result (false positive) with a probability of 0.04 when in fact the wire is not strong. If 98% of the wires are strong, and a wire chosen at random fails the test, what is the probability it really is not strong enough? * Please solve using Bayes' Theorem and explain completely. Thanks.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
100%
Hello. Please answer the attached
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON