Why is glycogenesis necessary? Why is glycogenolysis necessary?
Enzyme kinetics
In biochemistry, enzymes are proteins that act as biological catalysts. Catalysis is the addition of a catalyst to a chemical reaction to speed up the pace of the reaction. Catalysis can be categorized as either homogeneous or heterogeneous, depending on whether the catalysts are distributed in the same phase as that of the reactants. Enzymes are an essential part of the cell because, without them, many organic processes would slow down and thus will affect the processes that are important for cell survival and sustenance.
Regulation of Enzymes
A substance that acts as a catalyst to regulate the reaction rate in the living organism's metabolic pathways without itself getting altered is an enzyme. Most of the biological reactions and metabolic pathways in the living systems are carried out by enzymes. They are specific for their works and work in particular conditions. It maintains the best possible rate of reaction in the most stable state. The enzymes have distinct properties as they can proceed with the reaction in any direction, their particular binding sites, pH specificity, temperature specificity required in very few amounts.
Why is glycogenesis necessary? Why is glycogenolysis necessary?

Glycogen is a polymer of glucose molecules linked by -1,4 and -1,6 glycosidic linkages which makes it a highly branched structure. Glycogen is present in the cytoplasm along with its enzymes that catalyze its formation and degradation. Glycogen also is a major form of stored food in the animals, liver and muscle stores the glycogen. The liver uses stored glycogen by converting it into glucose so as to provide energy to the body.
Glycogenesis or glycogen synthesis occurs mainly in the liver or muscles where it has to be stored from glucose-6- phosphate.
Glycogenolysis is the opposite of glycogenesis, where the breakdown of glycogen to glucose occurs.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps









