while flowing through a smooth pipe with 1.5 cm inner diameter and 7 meters length.The entire surface of the pipe is equipped with an electric heater, which ensures uniform heating throughout.The outer surface of the heater is well insulated and therefore all heat generated in the heater in continuous operation is transferred to the water in the pipe.If the system provides 6 Liter / minute flow rate of hot water. (Thermophysical properties of water at 50 oC:ρ = 988 m3/kg, k= 0.6305 W/m oC, cp=4181 J/kg oC, Pr=3.628, μ= 0.0005471 kg/m.s ) a)Find the power of the resistance heater [W]. b)Calculate the inner surface temperature [oC] of the pipe at the outlet. c)Find the pressure drop [Pa].
Heat Transfer Lesson
The water will be heated from 10 (Degrees centigrade oC) to 90 (Degrees centigrade oC) while flowing through a smooth pipe with 1.5 cm inner diameter and 7 meters length.The entire surface of the pipe is equipped with an electric heater, which ensures uniform heating throughout.The outer surface of the heater is well insulated and therefore all heat generated in the heater in continuous operation is transferred to the water in the pipe.If the system provides 6 Liter / minute flow rate of hot water.
(Thermophysical properties of water at 50 oC:ρ = 988 m3/kg, k= 0.6305 W/m oC, cp=4181 J/kg oC, Pr=3.628, μ= 0.0005471 kg/m.s )
a)Find the power of the resistance heater [W].
b)Calculate the inner surface temperature [oC] of the pipe at the outlet.
c)Find the pressure drop [Pa].
d)Find the pump power [W] required to overcome this pressure drop.
Step by step
Solved in 3 steps with 3 images