Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![**Question: Osmolarity Comparison**
**Topic: Chemistry - Solutions and Concentration**
Which solution has a higher osmolarity, 0.40 M LiCl or a 0.30 M solution of Na₂SO₄?
---
**Explanation:**
Osmolarity is a measure of the total concentration of solute particles in a solution. It is calculated by multiplying the molarity of the solution by the number of particles (ions) each solute dissociates into when dissolved in water.
1. **Lithium Chloride (LiCl):**
- The dissociation of LiCl in water is:
\[
\text{LiCl (s)} \rightarrow \text{Li}^+ (\text{aq}) + \text{Cl}^- (\text{aq})
\]
- Each formula unit of LiCl dissociates into 2 ions (1 Li⁺ and 1 Cl⁻).
\[
\text{Osmolarity of LiCl} = 0.40 \text{ M} \times 2 = 0.80 \text{ Osm}
\]
2. **Sodium Sulfate (Na₂SO₄):**
- The dissociation of Na₂SO₄ in water is:
\[
\text{Na}_2\text{SO}_4 (\text{s}) \rightarrow 2\text{Na}^+ (\text{aq}) + \text{SO}_4^{2-} (\text{aq})
\]
- Each formula unit of Na₂SO₄ dissociates into 3 ions (2 Na⁺ and 1 SO₄²⁻).
\[
\text{Osmolarity of Na}_2\text{SO}_4 = 0.30 \text{ M} \times 3 = 0.90 \text{ Osm}
\]
**Conclusion:**
The 0.30 M solution of Na₂SO₄ has a higher osmolarity (0.90 Osm) compared to the 0.40 M solution of LiCl (0.80 Osm).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd840dc46-e3d2-47d1-9b6d-e93b2d8faa77%2F6ea54945-f4f3-42a8-b53b-bd8630187827%2Fkj5b76.jpeg&w=3840&q=75)
Transcribed Image Text:**Question: Osmolarity Comparison**
**Topic: Chemistry - Solutions and Concentration**
Which solution has a higher osmolarity, 0.40 M LiCl or a 0.30 M solution of Na₂SO₄?
---
**Explanation:**
Osmolarity is a measure of the total concentration of solute particles in a solution. It is calculated by multiplying the molarity of the solution by the number of particles (ions) each solute dissociates into when dissolved in water.
1. **Lithium Chloride (LiCl):**
- The dissociation of LiCl in water is:
\[
\text{LiCl (s)} \rightarrow \text{Li}^+ (\text{aq}) + \text{Cl}^- (\text{aq})
\]
- Each formula unit of LiCl dissociates into 2 ions (1 Li⁺ and 1 Cl⁻).
\[
\text{Osmolarity of LiCl} = 0.40 \text{ M} \times 2 = 0.80 \text{ Osm}
\]
2. **Sodium Sulfate (Na₂SO₄):**
- The dissociation of Na₂SO₄ in water is:
\[
\text{Na}_2\text{SO}_4 (\text{s}) \rightarrow 2\text{Na}^+ (\text{aq}) + \text{SO}_4^{2-} (\text{aq})
\]
- Each formula unit of Na₂SO₄ dissociates into 3 ions (2 Na⁺ and 1 SO₄²⁻).
\[
\text{Osmolarity of Na}_2\text{SO}_4 = 0.30 \text{ M} \times 3 = 0.90 \text{ Osm}
\]
**Conclusion:**
The 0.30 M solution of Na₂SO₄ has a higher osmolarity (0.90 Osm) compared to the 0.40 M solution of LiCl (0.80 Osm).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY