Which of the following subets are not subspaces of P_(3) A. The set of all polynomials of degree equal to 4. B. The set W={p inP_(3)|p(1)=0} C. The set W={p inB_(3)lp^(')(1)=0} D. The set W= {P(x)=a (0)+a (1)x+a (2)x^(2)+a (3)x^(3)inP (3) la (0)+a (1) +a (2)+a (3)=0}
Which of the following subets are not subspaces of P_(3) A. The set of all polynomials of degree equal to 4. B. The set W={p inP_(3)|p(1)=0} C. The set W={p inB_(3)lp^(')(1)=0} D. The set W= {P(x)=a (0)+a (1)x+a (2)x^(2)+a (3)x^(3)inP (3) la (0)+a (1) +a (2)+a (3)=0}
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Sp
![Which of the following subets are not subspaces of P_(3) A. The set of all polynomials of degree
equal to 4. B. The set W={p inP_(3)|p(1)=0} C. The set W={p inB_(3)lp^(')(1)=0} D. The set W=
{P(x)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)inP_(3)la_(0)+a_(1)+a_(2)+a_(3)=0}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1ac89015-4b1e-41e5-8d85-790f25755063%2F30e6b399-1a21-40b3-b6bf-8fc4d9996b26%2F1yddj89_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Which of the following subets are not subspaces of P_(3) A. The set of all polynomials of degree
equal to 4. B. The set W={p inP_(3)|p(1)=0} C. The set W={p inB_(3)lp^(')(1)=0} D. The set W=
{P(x)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)inP_(3)la_(0)+a_(1)+a_(2)+a_(3)=0}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)