Which of the following functions V(y₁, Y2) is a Lyapunov function for the dynamical system with equilibrium point at (0, 0) y₁ = −2y₁y²e(¹1⁄₂)² — 6y₁, - Y2 y₂ = -2y²y₂e(¹1³2)² – 2y2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions
equilibrium point at (0, 0)
y₁ = −2y₁y²e(1132)² — 6y₁,
V(y1, Y2) is a Lyapunov function for the dynamical system with
Y2
y₂ = -2y²y₂e (₁₂)² – 2y₂
−2y²y2e(³1⁄2)²
Transcribed Image Text:Which of the following functions equilibrium point at (0, 0) y₁ = −2y₁y²e(1132)² — 6y₁, V(y1, Y2) is a Lyapunov function for the dynamical system with Y2 y₂ = -2y²y₂e (₁₂)² – 2y₂ −2y²y2e(³1⁄2)²
○ a.
O b.
○ c.
○ d.
V(y₁, y2) = e(4132)²
V(y₁, Y2) = e(9192)² + y² − 1 + 3y²
V(y₁, y2) = y₁ + (y2 − 1)²
V(y₁, y2) = y²e(4192)² + y² − 3y₁
Transcribed Image Text:○ a. O b. ○ c. ○ d. V(y₁, y2) = e(4132)² V(y₁, Y2) = e(9192)² + y² − 1 + 3y² V(y₁, y2) = y₁ + (y2 − 1)² V(y₁, y2) = y²e(4192)² + y² − 3y₁
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,