where B = P-¹AP. STEP 1: First note that A 3 00 0 -2 0 0 0 1 P-¹AP = = || |B| = 13 11 13([ STEP 3: Does |B| = O Yes O No -- [³ 1 -2 0 -1 12 0-1 1 1-2 0 -1 12 0 -1 1 000 |A|? 13 10 -20 -9 -6 3 and B are similar. 3 ][ 14 -5 3 00 0-2 0 0 01 STEP 2: Take the determinant of B by expanding along the first row. ↓ 1 Q 11 3 2 -4 1 1 -2 1 1 -1 BEE 1 10(3) - 32-4 11-2 1 1 -1 || -9 14 - 10-3 20 3-5 1-2 0 2 0 -1 1 -1 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Educational Website Transcription**

---

### Matrix Similarity and Determinants

**Given Matrices:**

\[ A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 13 & 10 & -20 \\ -9 & -6 & 14 \\ 3 & 3 & -5 \end{bmatrix}, \quad P = \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & -2 \\ 1 & -1 & 1 \end{bmatrix} \]

\[ P^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \]

where \( B = P^{-1}AP \).

---

**STEP 1: Similarity**

**Goal:** Confirm that \( A \) and \( B \) are similar matrices by calculating \( P^{-1}AP \).

\[ P^{-1}AP = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & -2 \\ 1 & -1 & 1 \end{bmatrix} \]

**Step-by-step Matrix Multiplication:**

- Multiply the first two matrices:

  \[ 
  \begin{bmatrix} 
  1 & -2 & 0 \\ 
  -1 & 1 & 2 \\ 
  0 & -1 & 1 
  \end{bmatrix}
  \begin{bmatrix} 
  3 & 0 & 0 \\ 
  0 & -2 & 0 \\ 
  0 & 0 & 1 
  \end{bmatrix} 
  = 
  \begin{bmatrix} 
  3 & 4 & 0
Transcribed Image Text:**Educational Website Transcription** --- ### Matrix Similarity and Determinants **Given Matrices:** \[ A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 13 & 10 & -20 \\ -9 & -6 & 14 \\ 3 & 3 & -5 \end{bmatrix}, \quad P = \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & -2 \\ 1 & -1 & 1 \end{bmatrix} \] \[ P^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \] where \( B = P^{-1}AP \). --- **STEP 1: Similarity** **Goal:** Confirm that \( A \) and \( B \) are similar matrices by calculating \( P^{-1}AP \). \[ P^{-1}AP = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & -2 \\ 1 & -1 & 1 \end{bmatrix} \] **Step-by-step Matrix Multiplication:** - Multiply the first two matrices: \[ \begin{bmatrix} 1 & -2 & 0 \\ -1 & 1 & 2 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 0
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,