When we estimate distances from velocity data, it is sometimes necessary to use times t0, t1, t2, t3, . . . that are not equally spaced. We can still estimate distances using the time periods Δti = ti − ti − 1. For example, a space shuttle was launched on a mission, the purpose of which was to install a new motor in a satellite. The table provided gives the velocity data for the shuttle between liftoff and the jettisoning of the solid rocket boosters. Use these data to estimate the height, h, above Earth's surface of the space shuttle, 62 seconds after liftoff. (Give the upper approximation available from the data.) h = ft Event Time (s) Velocity (ft/s) Launch 0 0 Begin roll maneuver 10 180 End roll maneuver 15 319 Throttle to 89% 20 442 Throttle to 67% 32 742 Throttle to 104% 59 1217 Maximum dynamic pressure 62 1430 Solid rocket booster separation 125 4052
When we estimate distances from velocity data, it is sometimes necessary to use times t0, t1, t2, t3, . . . that are not equally spaced. We can still estimate distances using the time periods Δti = ti − ti − 1. For example, a space shuttle was launched on a mission, the purpose of which was to install a new motor in a satellite. The table provided gives the velocity data for the shuttle between liftoff and the jettisoning of the solid rocket boosters. Use these data to estimate the height, h, above Earth's surface of the space shuttle, 62 seconds after liftoff. (Give the upper approximation available from the data.) h = ft Event Time (s) Velocity (ft/s) Launch 0 0 Begin roll maneuver 10 180 End roll maneuver 15 319 Throttle to 89% 20 442 Throttle to 67% 32 742 Throttle to 104% 59 1217 Maximum dynamic pressure 62 1430 Solid rocket booster separation 125 4052
Related questions
Question
When we estimate distances from velocity data, it is sometimes necessary to use times
t0, t1, t2, t3, . . .
that are not equally spaced. We can still estimate distances using the time periods
Δti = ti − ti − 1.
For example, a space shuttle was launched on a mission, the purpose of which was to install a new motor in a satellite. The table provided gives the velocity data for the shuttle between liftoff and the jettisoning of the solid rocket boosters. Use these data to estimate the height, h, above Earth's surface of the space shuttle, 62 seconds after liftoff. (Give the upper approximation available from the data.)
h = ft
Event | Time (s) | Velocity (ft/s) |
Launch | 0 | 0 |
Begin roll maneuver | 10 | 180 |
End roll maneuver | 15 | 319 |
Throttle to 89% | 20 | 442 |
Throttle to 67% | 32 | 742 |
Throttle to 104% | 59 | 1217 |
Maximum dynamic pressure | 62 | 1430 |
Solid rocket booster separation | 125 | 4052 |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 7 images