When picking up an object from the ground, it is generally recommended that you "lift with your legs" - that is, raise and lower yourself by bending your knees but keeping your upper body upright. If instead, you "lift with your back" by bending at the hip so that your uppe body is angled, then you put a great deal more stress on your spine and back muscles. Consider a person who is "lifting with their back" such that they are bent at the hip with their upper body is parallel to the ground (i.e., their spine is oriented horizontally). Let us calculate the tension in the back muscles and the compression on the spine in this situation. We will model the spine and upper body as a horizontal rigid rod or uniform density with a length of 50.0 cm and a mass of 40.0 kg. Assume that the person attempts to lift an object with their arms, which we will model as attached at the far end of the rod. Support of the back in this position is provided primarily by the erector spinalis muscle which we will model as being attached at one end to the spine at a point 33.0 cm from the hip at an angle of 10 degrees; the other end of the muscle is attached to the lower body below the hip. FRY T Fv=FRx 0 = 10° F Image size: S M L Max+ g.u.b. F g, obj
Plane Trusses
It is defined as, two or more elements like beams or any two or more force members, which when assembled together, behaves like a complete structure or as a single structure. They generally consist of two force member which means any component structure where the force is applied only at two points. The point of contact of joints of truss are known as nodes. They are generally made up of triangular patterns. Nodes are the points where all the external forces and the reactionary forces due to them act and shows whether the force is tensile or compressive. There are various characteristics of trusses and are characterized as Simple truss, planar truss or the Space Frame truss.
Equilibrium Equations
If a body is said to be at rest or moving with a uniform velocity, the body is in equilibrium condition. This means that all the forces are balanced in the body. It can be understood with the help of Newton's first law of motion which states that the resultant force on a system is null, where the system remains to be at rest or moves at uniform motion. It is when the rate of the forward reaction is equal to the rate of the backward reaction.
Force Systems
When a body comes in interaction with other bodies, they exert various forces on each other. Any system is under the influence of some kind of force. For example, laptop kept on table exerts force on the table and table exerts equal force on it, hence the system is in balance or equilibrium. When two or more materials interact then more than one force act at a time, hence it is called as force systems.
The answer for Fv is not 392.0N, as some may have answered.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 7 images