When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1  (91<λ<123 nm; near-UV). Balmer series:nf=2  (365<λ<658 nm; visible). Paschen series:nf=3  (819<λ<1877 nm; near-IR). Brackett series:nf=4  (1.456<λ<4.054 μm; short-to-mid-λ-IR) One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 93.11 nm. : Identify the value of ninitial. : Identify the value of nfinal .

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
100%

When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ΔE for any pair of energy levels. ΔE is related to the wavelength (λ) of the radiation according to Einstein's equation ( ΔE = [(hc)/λ]). Distinct series of spectral lines have been classified according to nf:

Lyman series:nf=1  (91<λ<123 nm; near-UV).
Balmer series:nf=2  (365<λ<658 nm; visible).
Paschen series:nf=3  (819<λ<1877 nm; near-IR).
Brackett series:nf=4  (1.456<λ<4.054 μm; short-to-mid-λ-IR)


One of the lines in the emission spectrum of the hydrogen atom has a wavelength of λ = 93.11 nm.

: Identify the value of ninitial.
: Identify the value of nfinal .

hello, you submitted an answer to this question but It was still not clear to me how you got n intial from the bohr model equation. Can you please provide me with a more clear handwritten step by step answer. I would really appreciate it!

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Quantum mechanics and hydrogen atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON