when acetone is heated in the gas phase, decomposition into ketene and methane takes place according to: (CH3)2CO > CH2-CO + CH4 the reaction is irreversible and first order. The rate constant is 1.047 s-1 vid 725 C. Calculate the turnover of acetone obtained in an isothermal and isobaric tube reactor under the following operating conditions. The reactor is made up of 20 parallel connected tubes, each with a length of 10 meters and an inner diameter of 10 cm. The working pressure is 4 atm and the temperature is 725 C. The acetone supply amounts to 120 mol/s.
when acetone is heated in the gas phase, decomposition into ketene and methane takes place according to: (CH3)2CO > CH2-CO + CH4 the reaction is irreversible and first order. The rate constant is 1.047 s-1 vid 725 C. Calculate the turnover of acetone obtained in an isothermal and isobaric tube reactor under the following operating conditions. The reactor is made up of 20 parallel connected tubes, each with a length of 10 meters and an inner diameter of 10 cm. The working pressure is 4 atm and the temperature is 725 C. The acetone supply amounts to 120 mol/s.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
when acetone is heated in the gas phase, decomposition into ketene and methane takes place according to:
(CH3)2CO > CH2-CO + CH4
the reaction is irreversible and first order. The rate constant is 1.047 s-1 vid 725 C. Calculate the turnover of acetone obtained in an isothermal and isobaric tube reactor under the following operating conditions. The reactor is made up of 20 parallel connected tubes, each with a length of 10 meters and an inner diameter of 10 cm. The working pressure is 4 atm and the temperature is 725 C. The acetone supply amounts to 120 mol/s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The