What is the role of the catalyst in electrophilic aromatic substitution reactions of benzene? O A. The catalyst speeds up the reaction by deprotonating the arenium ion that forms in the reaction. O B. The catalyst attaches to the benzene ring, making it more susceptible to electrophilic substitution OC. The catalyst prevents addition reaction from occurring. O D. The catalyst reacts with the non-benzene reactant to form the electrophile in the reaction.
Reactions of Ethers
Ethers (R-O-R’) are compounds formed by replacing hydrogen atoms of an alcohol (R-OH compound) or a phenol (C6H5OH) by an aryl/ acyl group (functional group after removing single hydrogen from an aromatic ring). In this section, reaction, preparation and behavior of ethers are discussed in the context of organic chemistry.
Epoxides
Epoxides are a special class of cyclic ethers which are an important functional group in organic chemistry and generate reactive centers due to their unusual high reactivity. Due to their high reactivity, epoxides are considered to be toxic and mutagenic.
Williamson Ether Synthesis
An organic reaction in which an organohalide and a deprotonated alcohol forms ether is known as Williamson ether synthesis. Alexander Williamson developed the Williamson ether synthesis in 1850. The formation of ether in this synthesis is an SN2 reaction.
Step by step
Solved in 3 steps