What is the dimension of the space spanned by 7. 3 3 1 6. 6 4 8. 0. 12

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section: Chapter Questions
Problem 39RE
icon
Related questions
Question

help with linear algebra homework Thank you!!

(SEE PIC ATTACHED IN FILE)

{[6]   ,   [7]   ,   [3]   ,   [3]   ,   [1]   ,   [2]}

{[0]   ,   [0]   ,   [1]   ,   [6]   ,   [2]   ,   [4]}

{[0]   ,   [0]   ,   [0]   ,   [0]   ,   [3]   ,   [6]}

{[0]   ,   [0]   ,   [0]   ,   [0]   ,   [4]   ,   [8]}

{[0]   ,   [0]   ,   [0]   ,   [0]   ,   [5]   ,   [12]}

The image contains the following mathematical problem:

**Question: What is the dimension of the space spanned by the following vectors?**

\[
\left\{
\begin{bmatrix}
6 \\
0 \\
0 \\
0
\end{bmatrix}, 
\begin{bmatrix}
7 \\
0 \\
0 \\
0
\end{bmatrix}, 
\begin{bmatrix}
3 \\
1 \\
0 \\
0
\end{bmatrix}, 
\begin{bmatrix}
3 \\
6 \\
0 \\
0
\end{bmatrix}, 
\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}, 
\begin{bmatrix}
2 \\
4 \\
6 \\
8
\end{bmatrix}, 
\begin{bmatrix}
5 \\
3 \\
4 \\
5
\end{bmatrix}, 
\begin{bmatrix}
6 \\
8 \\
12 \\
16
\end{bmatrix}
\right\}
\]

Each vector is enclosed in brackets and presented as a column vector. The problem asks for the dimension of the space these vectors span, which typically involves finding the rank of the matrix formed by these vectors.
Transcribed Image Text:The image contains the following mathematical problem: **Question: What is the dimension of the space spanned by the following vectors?** \[ \left\{ \begin{bmatrix} 6 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}, \begin{bmatrix} 5 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 8 \\ 12 \\ 16 \end{bmatrix} \right\} \] Each vector is enclosed in brackets and presented as a column vector. The problem asks for the dimension of the space these vectors span, which typically involves finding the rank of the matrix formed by these vectors.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage