Let WC R4 be a subspace such that W = span(w₁, W2, W3, W4), where 4 1 2 0 W1 = 1 0 1 0 9 W2 = 2 3 1 1 W3 = 0 2 1 1 W4 =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Find the dimension of W, dim(W), and briefly justify your answer.

Let \( W \subseteq \mathbb{R}^4 \) be a subspace such that \( W = \text{span}(\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}, \mathbf{w_4}) \), where:

\[
\mathbf{w_1} = \begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix},
\quad
\mathbf{w_2} = \begin{bmatrix}
2 \\
3 \\
1 \\
1
\end{bmatrix},
\quad
\mathbf{w_3} = \begin{bmatrix}
0 \\
2 \\
1 \\
1
\end{bmatrix},
\quad
\mathbf{w_4} = \begin{bmatrix}
4 \\
1 \\
2 \\
0
\end{bmatrix}.
\]
Transcribed Image Text:Let \( W \subseteq \mathbb{R}^4 \) be a subspace such that \( W = \text{span}(\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}, \mathbf{w_4}) \), where: \[ \mathbf{w_1} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w_2} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{w_3} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{w_4} = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 0 \end{bmatrix}. \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

why is it not all 4 vectors span W?

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,