Weatherwise is a magazine published by the American Meteorological Society. One issue gives a rating system used to classify Nor'easter storms that frequently hit New England and can cause much damage near the ocean. A severe storm has an average peak wave height of μ = 16.4 feet for waves hitting the shore. Suppose that a Nor'easter is in progress at the severe storm class rating. Peak wave heights are usually measured from land (using binoculars) off fixed cement piers. Suppose that a reading of 38 waves showed an average wave height of x = 17.3 feet. Previous studies of severe storms indicate that σ = 3.3 feet. Does this information suggest that the storm is (perhaps temporarily) increasing above the severe rating? Use α = 0.01. Solve the problem using the critical region method of testing (i.e., traditional method). (Round your answers to two decimal places.) test statistic = critical value = State your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the average storm level is increasing.Reject the null hypothesis, there is insufficient evidence that the average storm level is increasing. Fail to reject the null hypothesis, there is sufficient evidence that the average storm level is increasing.Fail to reject the null hypothesis, there is insufficient evidence that the average storm level is increasing. Compare your conclusion with the conclusion obtained by using the P-value method. Are they the same? We reject the null hypothesis using the traditional method, but fail to reject using the P-value method.The conclusions obtained by using both methods are the same. We reject the null hypothesis using the P-value method, but fail to reject using the traditional method.
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Weatherwise is a magazine published by the American Meteorological Society. One issue gives a rating system used to classify Nor'easter storms that frequently hit New England and can cause much damage near the ocean. A severe storm has an average peak wave height of μ = 16.4 feet for waves hitting the shore. Suppose that a Nor'easter is in progress at the severe storm class rating. Peak wave heights are usually measured from land (using binoculars) off fixed cement piers. Suppose that a reading of 38 waves showed an average wave height of
= 17.3 feet. Previous studies of severe storms indicate that σ = 3.3 feet. Does this information suggest that the storm is (perhaps temporarily) increasing above the severe rating? Use α = 0.01. Solve the problem using the critical region method of testing (i.e., traditional method). (Round your answers to two decimal places.)
test statistic | = | |
critical value | = |
State your conclusion in the context of the application.
Compare your conclusion with the conclusion obtained by using the P-value method. Are they the same?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images