We believe that the single factor model can predict any individual asset’s realized rate of return well. Both Portfolio A and Portfolio B are well-diversified: ri = E(ri) + βiF + Ei, where E(ei) = 0 and Cov(F, i) = 0 A B β 1.2 0.8 E(r) 0.1 0.08 (1) What is the rate of return of the risk-free asset? (2) What is the expected rate of return of the well-diversified portfolio C with βC = 1.6, which also exists in the market? (3) A fund constructs a well-diversified portfolio D. Studies show that βD = 0.6. The expected rate of return of D is 0.06. Is there an arbitrage opportunity? If so, construct a trading strategy to earn profits with no risk. If not, why?
Risk and return
Before understanding the concept of Risk and Return in Financial Management, understanding the two-concept Risk and return individually is necessary.
Capital Asset Pricing Model
Capital asset pricing model, also known as CAPM, shows the relationship between the expected return of the investment and the market at risk. This concept is basically used particularly in the case of stocks or shares. It is also used across finance for pricing assets that have higher risk identity and for evaluating the expected returns for the assets given the risk of those assets and also the cost of capital.
We believe that the single factor model can predict any individual asset’s realized
A | B | |
β | 1.2 | 0.8 |
E(r) | 0.1 | 0.08 |
(1) What is the rate of return of the risk-free asset?
(2) What is the expected rate of return of the well-diversified portfolio C with βC = 1.6, which also exists in the market?
(3) A fund constructs a well-diversified portfolio D. Studies show that βD = 0.6. The expected rate of return of D is 0.06. Is there an arbitrage opportunity? If so, construct a trading strategy to earn profits with no risk. If not, why?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps