Water is pumped from a lake to a large storage tank that is on the top open to the atmosphere. The water surface in the tank is 20 m above the water surface of the lake. The volume flow is 50 litres/s and 15 kW of electrical power is used for it. Disregard losses in flow energy due to friction and from changes in the kinetic energy of the water. Use ρ = 997 kg/m3 as mass density for liquid water. a) Calculate the total efficiency of the pump-motor unit. b) Calculate the pressure difference between inlet out outlet of the pump needed to pump the water up to the idea.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Water is pumped from a lake to a large storage tank that is on
the top open to the atmosphere. The water surface in the tank is 20 m above the water surface of the lake. The volume flow is 50 litres/s and 15 kW of electrical power is used for it. Disregard losses in flow energy due to friction and from changes in the kinetic energy of the water. Use ρ = 997 kg/m3
as mass density for liquid water.
a) Calculate the total efficiency of the pump-motor unit.
b) Calculate the pressure difference between inlet out outlet of
the pump needed to pump the water up to the idea.

20 m
Pump
Storage tank
Transcribed Image Text:20 m Pump Storage tank
Expert Solution
Step 1

The given information in the problem is listed in the following attached image:

Mechanical Engineering homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY