Vs W Rsig 0 WHE r R RG R₂ V DD RD Rs S f) Overall voltage gain G, Ro OLE R₁ V₁=2.4V, k -=1.0 mA/V²,V₁=200V, V₁ =15V, Rig 500 S2, R₂ = 1k Ry=5kΩ, Rg=1kΩ,R=1ΜΩ, R,=415kΩ "L DD a) small signal parameters mo b) Draw the small signal circuit for the amplifier c) Input resistance Rin d) Output Resistance Rout e) Voltage gain A₁ = BAZAART
Vs W Rsig 0 WHE r R RG R₂ V DD RD Rs S f) Overall voltage gain G, Ro OLE R₁ V₁=2.4V, k -=1.0 mA/V²,V₁=200V, V₁ =15V, Rig 500 S2, R₂ = 1k Ry=5kΩ, Rg=1kΩ,R=1ΜΩ, R,=415kΩ "L DD a) small signal parameters mo b) Draw the small signal circuit for the amplifier c) Input resistance Rin d) Output Resistance Rout e) Voltage gain A₁ = BAZAART
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
100%
2 cont) please solve last three sub parts with given info:
![### Educational Transcription
#### Transistor Circuit Calculations
1. **Voltage Calculation (\(V_{G}\)):**
\[
V_{G} = V_{DD} \times \frac{R_2}{R_1 + R_2}
\]
\[
= 15 \times \left(\frac{0.415}{1.415}\right)
\]
\[
= 4.4 \, \text{V}
\]
2. **Current Analysis (\(I_D\)):**
- Voltage Source (\(V_S\)):
\[
V_S = I_D R_s + I_0
\]
- Current (\(I_0\)):
\[
I_0 = \frac{k_n}{2} \, (V_{GS} - V_T)^2
\]
Solving yields:
\[
I_D = 1 \, (4.4 - I_D - 2.4)^2
\]
\[
I_D = (2 - I_D)
\]
Solving quadratic equation:
\[
I_D^2 + 4 - 5 I_D = 0
\]
\[
I_D = \frac{5 \pm \sqrt{25-16}}{2} = \frac{5 \pm 3}{2}
\]
\[
I_D = \underline{I_D = 1}
\]
3. **Transconductance Calculation (\(g_m\)):**
\[
g_m = \sqrt{2 k_n I_D}
\]
\[
= \sqrt{2 \times 2 \times 1}
\]
\[
= \underline{4 \, \text{mA/V}}
\]
4. **Output Resistance (\(r_0\)):**
\[
r_0 = \frac{V_A}{I_D} = \frac{200 \, \text{V}}{1 \, \text{A}}
\]
\[
r_0 = \underline{200 \, \text{k}\Omega}
\]
5. **Small-Signal Equivalent:**
- Capacitors act as short circuits in an AC small-signal analysis](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F93e18a88-13ba-47d2-8c84-ec9d29397d2a%2F5bb84763-c2e7-4442-aa2d-70227013e239%2F011loaa_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Educational Transcription
#### Transistor Circuit Calculations
1. **Voltage Calculation (\(V_{G}\)):**
\[
V_{G} = V_{DD} \times \frac{R_2}{R_1 + R_2}
\]
\[
= 15 \times \left(\frac{0.415}{1.415}\right)
\]
\[
= 4.4 \, \text{V}
\]
2. **Current Analysis (\(I_D\)):**
- Voltage Source (\(V_S\)):
\[
V_S = I_D R_s + I_0
\]
- Current (\(I_0\)):
\[
I_0 = \frac{k_n}{2} \, (V_{GS} - V_T)^2
\]
Solving yields:
\[
I_D = 1 \, (4.4 - I_D - 2.4)^2
\]
\[
I_D = (2 - I_D)
\]
Solving quadratic equation:
\[
I_D^2 + 4 - 5 I_D = 0
\]
\[
I_D = \frac{5 \pm \sqrt{25-16}}{2} = \frac{5 \pm 3}{2}
\]
\[
I_D = \underline{I_D = 1}
\]
3. **Transconductance Calculation (\(g_m\)):**
\[
g_m = \sqrt{2 k_n I_D}
\]
\[
= \sqrt{2 \times 2 \times 1}
\]
\[
= \underline{4 \, \text{mA/V}}
\]
4. **Output Resistance (\(r_0\)):**
\[
r_0 = \frac{V_A}{I_D} = \frac{200 \, \text{V}}{1 \, \text{A}}
\]
\[
r_0 = \underline{200 \, \text{k}\Omega}
\]
5. **Small-Signal Equivalent:**
- Capacitors act as short circuits in an AC small-signal analysis
![**Transcription for Educational Website**
---
**Circuit Diagram Overview:**
The diagram illustrates a common-source amplifier configuration using a MOSFET transistor. Key components include:
- **V\_DD**: The supply voltage.
- **R\_D, R\_S, R\_G, R\_sig, R\_L, R\_2**: Resistors connected at various points in the circuit.
- **C\_S**: A capacitor connected in parallel with R\_S.
- **V\_S**: The input voltage source.
- **R\_in, R\_out**: Input and output resistance points.
- **V\_o**: The output voltage point.
**Given Parameters:**
- Threshold voltage \( V_t = 2.4V \)
- Transconductance parameter \( \frac{1}{2} k'_n \frac{W}{L} = 1.0 \, \text{mA/V}^2 \)
- Early voltage \( V_A = 200V \)
- Supply voltage \( V_{DD} = 15V \)
- Signal resistance \( R_{Sig} = 500\Omega \)
- Load resistance \( R_L = 1k\Omega \)
- \( R_D = 5k\Omega \), \( R_S = 1k\Omega \), \( R_G = 1M\Omega \), \( R_2 = 415k\Omega \)
**Analysis Tasks:**
a) **Small Signal Parameters \( g_m, r_o \):**
- Determine the transconductance (\( g_m \)) and output resistance (\( r_o \)) of the small signal model.
b) **Draw the Small Signal Circuit for the Amplifier:**
- Illustrate the equivalent small signal circuit representation for analysis.
c) **Input Resistance \( R_{in} \):**
- Calculate the equivalent input resistance as seen by the source.
d) **Output Resistance \( R_{out} \):**
- Calculate the equivalent output resistance of the circuit.
e) **Voltage Gain \( A_V = \frac{v_o}{v_i} \):**
- Derive the amplifier's voltage gain from input to output.
f) **Overall Voltage Gain \( G_V = \frac{v_o}{v_s} \):**
- Determine the overall](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F93e18a88-13ba-47d2-8c84-ec9d29397d2a%2F5bb84763-c2e7-4442-aa2d-70227013e239%2F5iqerx_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Transcription for Educational Website**
---
**Circuit Diagram Overview:**
The diagram illustrates a common-source amplifier configuration using a MOSFET transistor. Key components include:
- **V\_DD**: The supply voltage.
- **R\_D, R\_S, R\_G, R\_sig, R\_L, R\_2**: Resistors connected at various points in the circuit.
- **C\_S**: A capacitor connected in parallel with R\_S.
- **V\_S**: The input voltage source.
- **R\_in, R\_out**: Input and output resistance points.
- **V\_o**: The output voltage point.
**Given Parameters:**
- Threshold voltage \( V_t = 2.4V \)
- Transconductance parameter \( \frac{1}{2} k'_n \frac{W}{L} = 1.0 \, \text{mA/V}^2 \)
- Early voltage \( V_A = 200V \)
- Supply voltage \( V_{DD} = 15V \)
- Signal resistance \( R_{Sig} = 500\Omega \)
- Load resistance \( R_L = 1k\Omega \)
- \( R_D = 5k\Omega \), \( R_S = 1k\Omega \), \( R_G = 1M\Omega \), \( R_2 = 415k\Omega \)
**Analysis Tasks:**
a) **Small Signal Parameters \( g_m, r_o \):**
- Determine the transconductance (\( g_m \)) and output resistance (\( r_o \)) of the small signal model.
b) **Draw the Small Signal Circuit for the Amplifier:**
- Illustrate the equivalent small signal circuit representation for analysis.
c) **Input Resistance \( R_{in} \):**
- Calculate the equivalent input resistance as seen by the source.
d) **Output Resistance \( R_{out} \):**
- Calculate the equivalent output resistance of the circuit.
e) **Voltage Gain \( A_V = \frac{v_o}{v_i} \):**
- Derive the amplifier's voltage gain from input to output.
f) **Overall Voltage Gain \( G_V = \frac{v_o}{v_s} \):**
- Determine the overall
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,