Vs W Rsig 0 WHE r R RG R₂ V DD RD Rs S f) Overall voltage gain G, Ro OLE R₁ V₁=2.4V, k -=1.0 mA/V²,V₁=200V, V₁ =15V, Rig 500 S2, R₂ = 1k Ry=5kΩ, Rg=1kΩ,R=1ΜΩ, R,=415kΩ "L DD a) small signal parameters mo b) Draw the small signal circuit for the amplifier c) Input resistance Rin d) Output Resistance Rout e) Voltage gain A₁ = BAZAART

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%
2 cont) please solve last three sub parts with given info:
### Educational Transcription

#### Transistor Circuit Calculations

1. **Voltage Calculation (\(V_{G}\)):**

   \[
   V_{G} = V_{DD} \times \frac{R_2}{R_1 + R_2}
   \]

   \[
   = 15 \times \left(\frac{0.415}{1.415}\right)
   \]

   \[
   = 4.4 \, \text{V}
   \]

2. **Current Analysis (\(I_D\)):**

   - Voltage Source (\(V_S\)):

     \[
     V_S = I_D R_s + I_0
     \]

   - Current (\(I_0\)):

     \[
     I_0 = \frac{k_n}{2} \, (V_{GS} - V_T)^2
     \]

     Solving yields:

     \[
     I_D = 1 \, (4.4 - I_D - 2.4)^2
     \]

     \[
     I_D = (2 - I_D)
     \]

     Solving quadratic equation:

     \[
     I_D^2 + 4 - 5 I_D = 0
     \]

     \[
     I_D = \frac{5 \pm \sqrt{25-16}}{2} = \frac{5 \pm 3}{2}
     \]

     \[
     I_D = \underline{I_D = 1}
     \]

3. **Transconductance Calculation (\(g_m\)):**

   \[
   g_m = \sqrt{2 k_n I_D}
   \]

   \[
   = \sqrt{2 \times 2 \times 1}
   \]

   \[
   = \underline{4 \, \text{mA/V}}
   \]

4. **Output Resistance (\(r_0\)):**

   \[
   r_0 = \frac{V_A}{I_D} = \frac{200 \, \text{V}}{1 \, \text{A}}
   \]

   \[
   r_0 = \underline{200 \, \text{k}\Omega}
   \]

5. **Small-Signal Equivalent:**

   - Capacitors act as short circuits in an AC small-signal analysis
Transcribed Image Text:### Educational Transcription #### Transistor Circuit Calculations 1. **Voltage Calculation (\(V_{G}\)):** \[ V_{G} = V_{DD} \times \frac{R_2}{R_1 + R_2} \] \[ = 15 \times \left(\frac{0.415}{1.415}\right) \] \[ = 4.4 \, \text{V} \] 2. **Current Analysis (\(I_D\)):** - Voltage Source (\(V_S\)): \[ V_S = I_D R_s + I_0 \] - Current (\(I_0\)): \[ I_0 = \frac{k_n}{2} \, (V_{GS} - V_T)^2 \] Solving yields: \[ I_D = 1 \, (4.4 - I_D - 2.4)^2 \] \[ I_D = (2 - I_D) \] Solving quadratic equation: \[ I_D^2 + 4 - 5 I_D = 0 \] \[ I_D = \frac{5 \pm \sqrt{25-16}}{2} = \frac{5 \pm 3}{2} \] \[ I_D = \underline{I_D = 1} \] 3. **Transconductance Calculation (\(g_m\)):** \[ g_m = \sqrt{2 k_n I_D} \] \[ = \sqrt{2 \times 2 \times 1} \] \[ = \underline{4 \, \text{mA/V}} \] 4. **Output Resistance (\(r_0\)):** \[ r_0 = \frac{V_A}{I_D} = \frac{200 \, \text{V}}{1 \, \text{A}} \] \[ r_0 = \underline{200 \, \text{k}\Omega} \] 5. **Small-Signal Equivalent:** - Capacitors act as short circuits in an AC small-signal analysis
**Transcription for Educational Website**

---

**Circuit Diagram Overview:**

The diagram illustrates a common-source amplifier configuration using a MOSFET transistor. Key components include:

- **V\_DD**: The supply voltage.
- **R\_D, R\_S, R\_G, R\_sig, R\_L, R\_2**: Resistors connected at various points in the circuit.
- **C\_S**: A capacitor connected in parallel with R\_S.
- **V\_S**: The input voltage source.
- **R\_in, R\_out**: Input and output resistance points.
- **V\_o**: The output voltage point.

**Given Parameters:**

- Threshold voltage \( V_t = 2.4V \)
- Transconductance parameter \( \frac{1}{2} k'_n \frac{W}{L} = 1.0 \, \text{mA/V}^2 \)
- Early voltage \( V_A = 200V \)
- Supply voltage \( V_{DD} = 15V \)
- Signal resistance \( R_{Sig} = 500\Omega \)
- Load resistance \( R_L = 1k\Omega \)
- \( R_D = 5k\Omega \), \( R_S = 1k\Omega \), \( R_G = 1M\Omega \), \( R_2 = 415k\Omega \)

**Analysis Tasks:**

a) **Small Signal Parameters \( g_m, r_o \):**

   - Determine the transconductance (\( g_m \)) and output resistance (\( r_o \)) of the small signal model.

b) **Draw the Small Signal Circuit for the Amplifier:**

   - Illustrate the equivalent small signal circuit representation for analysis.

c) **Input Resistance \( R_{in} \):**

   - Calculate the equivalent input resistance as seen by the source.

d) **Output Resistance \( R_{out} \):**

   - Calculate the equivalent output resistance of the circuit.

e) **Voltage Gain \( A_V = \frac{v_o}{v_i} \):**

   - Derive the amplifier's voltage gain from input to output.

f) **Overall Voltage Gain \( G_V = \frac{v_o}{v_s} \):**

   - Determine the overall
Transcribed Image Text:**Transcription for Educational Website** --- **Circuit Diagram Overview:** The diagram illustrates a common-source amplifier configuration using a MOSFET transistor. Key components include: - **V\_DD**: The supply voltage. - **R\_D, R\_S, R\_G, R\_sig, R\_L, R\_2**: Resistors connected at various points in the circuit. - **C\_S**: A capacitor connected in parallel with R\_S. - **V\_S**: The input voltage source. - **R\_in, R\_out**: Input and output resistance points. - **V\_o**: The output voltage point. **Given Parameters:** - Threshold voltage \( V_t = 2.4V \) - Transconductance parameter \( \frac{1}{2} k'_n \frac{W}{L} = 1.0 \, \text{mA/V}^2 \) - Early voltage \( V_A = 200V \) - Supply voltage \( V_{DD} = 15V \) - Signal resistance \( R_{Sig} = 500\Omega \) - Load resistance \( R_L = 1k\Omega \) - \( R_D = 5k\Omega \), \( R_S = 1k\Omega \), \( R_G = 1M\Omega \), \( R_2 = 415k\Omega \) **Analysis Tasks:** a) **Small Signal Parameters \( g_m, r_o \):** - Determine the transconductance (\( g_m \)) and output resistance (\( r_o \)) of the small signal model. b) **Draw the Small Signal Circuit for the Amplifier:** - Illustrate the equivalent small signal circuit representation for analysis. c) **Input Resistance \( R_{in} \):** - Calculate the equivalent input resistance as seen by the source. d) **Output Resistance \( R_{out} \):** - Calculate the equivalent output resistance of the circuit. e) **Voltage Gain \( A_V = \frac{v_o}{v_i} \):** - Derive the amplifier's voltage gain from input to output. f) **Overall Voltage Gain \( G_V = \frac{v_o}{v_s} \):** - Determine the overall
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Frequency Modulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,