Voltaic Cells Under Non-Standard Conditions Step 1-2 Identify the reduction half-reaction. E° for this reaction is E°cathode- Step 3-4 Identify the oxidation half-reaction. E° for this reaction is E°anode: Step 5 Determine the number of electrons transferred in the process. Step 6 Calculate E°, cell- E°cell = E°cathode - E°anode Step 7 Identify the form of the reaction quotient, Q. This is of the same form as the equilibrium constant expression for the system being studied. Step 8 Calculate the numerical value of Q. Step 9 Use the Nernst equation to calculate the cell potential. Calculate the potential developed by a voltaic cell using the following reaction if all dissolved species are 0.025 M at 25 °C. 2 Fe2 (aq) + H2O2(aq) + 2 H*(aq) – 2 Fe"(aq) + 2 H20(£) Acidic Solution Standard Electrode Potential, E°(volts) H2O2(aq) + 2 H'(aq) + 2 e 2 H20(t) +1.77 Au*(aq) + e - Au(s) Au3'(aq) + 3 e Au(s) Br2(e) + 2 e - 2 Br(aq) +1.68 +1.50 +1.08 NO3 (aq) + 4 H'(aq) + 3 e → NO(g) + 2 H20 Ag*(aq) + e – Ag(s) Hg22"(aq) + 2 e →2 Hg(t) Fe"(aq) + e- Cu²"(aq) + 2 e → Cu(s) +0.96 +0.80 +0.789 Fe"(aq) +0.77 +0.337 Hg2Clz(s) + 2 e Sn+(aq) + 2e 2 H*(aq) + 2 e 2 Hg(t) + 2 C(aq) +0.27 Sn²*(aq) +0.15 H2(g) 0.00 Pb2"(ag) + 2 e Pb(s) → Sn(s) → Ni(s) -0.126 Sn2*(aq) + 2 e Ni2"(aq) + 2 e Cd2*(aq) + 2 e → Cd(s) Cr**(aq) + e – Cr**(aq) Fe2*(aq) + 2 e Zn?*(aq) + 2 e Cr*( ag) + 2 e -0.14 -0.25 -0.40 -0.408 → Fe(s) -0.44 Zn(s) -0.763 Cr(s) -0.91 Al* (aq) + 3 e Al(s) -1.66 Mg2*(aq) + 2 e → Mg(s) -2.37
Voltaic Cells Under Non-Standard Conditions Step 1-2 Identify the reduction half-reaction. E° for this reaction is E°cathode- Step 3-4 Identify the oxidation half-reaction. E° for this reaction is E°anode: Step 5 Determine the number of electrons transferred in the process. Step 6 Calculate E°, cell- E°cell = E°cathode - E°anode Step 7 Identify the form of the reaction quotient, Q. This is of the same form as the equilibrium constant expression for the system being studied. Step 8 Calculate the numerical value of Q. Step 9 Use the Nernst equation to calculate the cell potential. Calculate the potential developed by a voltaic cell using the following reaction if all dissolved species are 0.025 M at 25 °C. 2 Fe2 (aq) + H2O2(aq) + 2 H*(aq) – 2 Fe"(aq) + 2 H20(£) Acidic Solution Standard Electrode Potential, E°(volts) H2O2(aq) + 2 H'(aq) + 2 e 2 H20(t) +1.77 Au*(aq) + e - Au(s) Au3'(aq) + 3 e Au(s) Br2(e) + 2 e - 2 Br(aq) +1.68 +1.50 +1.08 NO3 (aq) + 4 H'(aq) + 3 e → NO(g) + 2 H20 Ag*(aq) + e – Ag(s) Hg22"(aq) + 2 e →2 Hg(t) Fe"(aq) + e- Cu²"(aq) + 2 e → Cu(s) +0.96 +0.80 +0.789 Fe"(aq) +0.77 +0.337 Hg2Clz(s) + 2 e Sn+(aq) + 2e 2 H*(aq) + 2 e 2 Hg(t) + 2 C(aq) +0.27 Sn²*(aq) +0.15 H2(g) 0.00 Pb2"(ag) + 2 e Pb(s) → Sn(s) → Ni(s) -0.126 Sn2*(aq) + 2 e Ni2"(aq) + 2 e Cd2*(aq) + 2 e → Cd(s) Cr**(aq) + e – Cr**(aq) Fe2*(aq) + 2 e Zn?*(aq) + 2 e Cr*( ag) + 2 e -0.14 -0.25 -0.40 -0.408 → Fe(s) -0.44 Zn(s) -0.763 Cr(s) -0.91 Al* (aq) + 3 e Al(s) -1.66 Mg2*(aq) + 2 e → Mg(s) -2.37
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![TUTOR
Voltaic Cells Under Non-Standard Conditions
Step 1-2
Identify the reduction half-reaction. E° for this reaction is E°cathode
Step 3-4
Identify the oxidation half-reaction. E° for this reaction is E°.
anode
Step 5
Determine the number of electrons transferred in the process.
Step 6
Calculate E°cell
E°cell = E°cathode - E°,
anode
Step 7
Identify the form of the reaction quotient, Q. This is of the same form as the equilibrium constant expression for the
system being studied.
Step 8
Calculate the numerical value of Q.
Step 9
Use the Nernst equation to calculate the cell potential.
Calculate the potential developed by a voltaic cell using the following reaction if all dissolved species are 0.025 M at 25
°C.
2 Fe?"(aq) + H2O2(aq) + 2 H*(aq) → 2 Fe"(aq) + 2 H20(E)
Acidic Solution
Standard Electrode Potential, E (volts)
H2O2(aq) + 2 H'(aq) + 2 e
→2 H20(t)
+1.77
Au*(aq) + e – Au(s)
Aus (aq) + 3 e →Au(s)
Br2(l) + 2 e - 2 Br(ag)
NO: (aq) + 4 H*(aq) + 3 e NO(g) + 2 H20
Ag*(aq) + e - Ag(s)
Hg22"(aq) + 2 e →2 Hg(?)
+1.68
+1.50
+1.08
+0.96
+0.80
+0.789
Fe"(ag) + e- → Fe2"(ag)
+0.77
Cu2*(aq) + 2 e → Cu(s)
+0.337
Hg2Clz(s) + 2 e
2 Hg(t) + 2 Cr(ag)
+0.27
Sn**(aq) + 2e
2 H*(aq) + 2 e
Pb2*(aq) + 2 e
Sn2*(aq) + 2 e
Sn2"(aq)
H2(g)
+0.15
0.00
-0.126
Pb(s)
→ Sn(s)
Ni2*(aq) + 2 e → Ni(s)
→ Cd(s)
Cr*(aq) + e - Cr*(aq)
Fe2*(aq) + 2 e Fe(s)
→ Zn(s)
Cr(s)
Al3+ (aq) + 3 e Al(s)
-0.14
-0.25
Cd2*(ag) + 2 e
-0.40
-0.408
-0.44
Zn2"(aq) + 2 e
Cr**( ag) + 2 e
-0.763
-0.91
-1.66
Mg2*(aq) + 2 e → Mg(s)
-2.37](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd90db30f-81f7-4e6a-8ae7-b9c16219a773%2F41ad5a43-fa25-43e9-8ee3-c38217ca5afc%2Fz3qchx_processed.png&w=3840&q=75)
Transcribed Image Text:TUTOR
Voltaic Cells Under Non-Standard Conditions
Step 1-2
Identify the reduction half-reaction. E° for this reaction is E°cathode
Step 3-4
Identify the oxidation half-reaction. E° for this reaction is E°.
anode
Step 5
Determine the number of electrons transferred in the process.
Step 6
Calculate E°cell
E°cell = E°cathode - E°,
anode
Step 7
Identify the form of the reaction quotient, Q. This is of the same form as the equilibrium constant expression for the
system being studied.
Step 8
Calculate the numerical value of Q.
Step 9
Use the Nernst equation to calculate the cell potential.
Calculate the potential developed by a voltaic cell using the following reaction if all dissolved species are 0.025 M at 25
°C.
2 Fe?"(aq) + H2O2(aq) + 2 H*(aq) → 2 Fe"(aq) + 2 H20(E)
Acidic Solution
Standard Electrode Potential, E (volts)
H2O2(aq) + 2 H'(aq) + 2 e
→2 H20(t)
+1.77
Au*(aq) + e – Au(s)
Aus (aq) + 3 e →Au(s)
Br2(l) + 2 e - 2 Br(ag)
NO: (aq) + 4 H*(aq) + 3 e NO(g) + 2 H20
Ag*(aq) + e - Ag(s)
Hg22"(aq) + 2 e →2 Hg(?)
+1.68
+1.50
+1.08
+0.96
+0.80
+0.789
Fe"(ag) + e- → Fe2"(ag)
+0.77
Cu2*(aq) + 2 e → Cu(s)
+0.337
Hg2Clz(s) + 2 e
2 Hg(t) + 2 Cr(ag)
+0.27
Sn**(aq) + 2e
2 H*(aq) + 2 e
Pb2*(aq) + 2 e
Sn2*(aq) + 2 e
Sn2"(aq)
H2(g)
+0.15
0.00
-0.126
Pb(s)
→ Sn(s)
Ni2*(aq) + 2 e → Ni(s)
→ Cd(s)
Cr*(aq) + e - Cr*(aq)
Fe2*(aq) + 2 e Fe(s)
→ Zn(s)
Cr(s)
Al3+ (aq) + 3 e Al(s)
-0.14
-0.25
Cd2*(ag) + 2 e
-0.40
-0.408
-0.44
Zn2"(aq) + 2 e
Cr**( ag) + 2 e
-0.763
-0.91
-1.66
Mg2*(aq) + 2 e → Mg(s)
-2.37
![What is the numerical value of Q?
H2O2 reduced at cathode
Fe2* oxidized at anode
2 e transferred
E° = 1.00 V
[Fe2+]°[H2O2][H+J°
Q =
Submit
The Nernst equation can then be used to find Ecel. What is this value?
H2O2 reduced at cathode
Fe2* oxidized at anode
2 e transferred
E° = 1.00 V
Q = 6.40x104
V](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd90db30f-81f7-4e6a-8ae7-b9c16219a773%2F41ad5a43-fa25-43e9-8ee3-c38217ca5afc%2Fwa393kr_processed.png&w=3840&q=75)
Transcribed Image Text:What is the numerical value of Q?
H2O2 reduced at cathode
Fe2* oxidized at anode
2 e transferred
E° = 1.00 V
[Fe2+]°[H2O2][H+J°
Q =
Submit
The Nernst equation can then be used to find Ecel. What is this value?
H2O2 reduced at cathode
Fe2* oxidized at anode
2 e transferred
E° = 1.00 V
Q = 6.40x104
V
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY