VISCOUS FLOW : Poiseuille’s law, Stokes law or Reynolds Number One way to administer an inoculation is with a “gun” that shoots the vaccine through a narrow opening. No needle is necessary, for the vaccine emerges with sufficient speed to pass directly into the tissue beneath the skin. The speed is high, because the vaccine ( = 1100 kg/m3) is held in a reservoir where a high pressure pushes it out. The pressure on the surface of the vaccine in one gun is 4.1 x 106 Pa above the atmospheric pressure outside the narrow opening. The dosage is small enough that the vaccine’s surface in the reservoir is nearly stationary during an inoculation. The vertical height between the vaccine’s surface in the reservoir and the opening can be ignored. Find the speed at which the vaccine emerges.
VISCOUS FLOW : Poiseuille’s law, Stokes law or Reynolds Number
One way to administer an inoculation is with a “gun” that shoots the vaccine through a narrow opening. No needle is necessary, for the vaccine emerges with sufficient speed to pass directly into the tissue beneath the skin. The speed is high, because the vaccine
( = 1100 kg/m3) is held in a reservoir where a high pressure pushes it out. The pressure on the surface of the vaccine in one gun is 4.1 x 106 Pa above the atmospheric pressure outside the narrow opening. The dosage is small enough that the vaccine’s surface in the reservoir is nearly stationary during an inoculation. The vertical height between the vaccine’s surface in the reservoir and the opening can be ignored. Find the speed at
which the vaccine emerges.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps