Vhen we do dimensional analysis, we do something analogous to stoichiometry, but with multiplying instead of adding. Consider the diffusion constant that appears in Fick's first law: dn J=-D dx n this expression, J represents a flow of particles: number of particles per unit area per second, n represents a concentration of particles: number of particles per unit volume; and x represents a listance. We can assume that they have the following dimensionalities: • ) = 1/L2T • [n] = 1/L3 • [x] = L From this, determine the dimensionality of D. (h) Einstein discovered a relation that expresses how D depends on the parameters of the system: the size of the particle diffusing (R), the viscosity of the fluid it is diffusing in w,and the thermal energy parameter (kg 7). These have the dimensionalities • [kg 7] = ML2/T2 • ) = M/LT • [R] = L Assume that we can express Das a product of these three quantities to some power, like this: D= (kg na (b (R)C Vrite eauations for a, b, and c that will guarantee that D will have the correct dimensionality for M, L, and T. (i) In this case, there were exactly the right number of parameters to give the same number of equations as there were unknowns. That will not always be the case, but sometimes his method still can be made to work by adding physical knowledge about the dependences. Solve these equations and write an expression how D depends on the three parameters. (The correct equation has a factor of 1/(6n) that cannot be found from dimensional analysis. Make sure to nclude this factor in vour answer.)
Vhen we do dimensional analysis, we do something analogous to stoichiometry, but with multiplying instead of adding. Consider the diffusion constant that appears in Fick's first law: dn J=-D dx n this expression, J represents a flow of particles: number of particles per unit area per second, n represents a concentration of particles: number of particles per unit volume; and x represents a listance. We can assume that they have the following dimensionalities: • ) = 1/L2T • [n] = 1/L3 • [x] = L From this, determine the dimensionality of D. (h) Einstein discovered a relation that expresses how D depends on the parameters of the system: the size of the particle diffusing (R), the viscosity of the fluid it is diffusing in w,and the thermal energy parameter (kg 7). These have the dimensionalities • [kg 7] = ML2/T2 • ) = M/LT • [R] = L Assume that we can express Das a product of these three quantities to some power, like this: D= (kg na (b (R)C Vrite eauations for a, b, and c that will guarantee that D will have the correct dimensionality for M, L, and T. (i) In this case, there were exactly the right number of parameters to give the same number of equations as there were unknowns. That will not always be the case, but sometimes his method still can be made to work by adding physical knowledge about the dependences. Solve these equations and write an expression how D depends on the three parameters. (The correct equation has a factor of 1/(6n) that cannot be found from dimensional analysis. Make sure to nclude this factor in vour answer.)
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Part g, h and i, please?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON