Very large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge the likelihood of injury is the severity index (??), defined as ??=?^5/2?. In the expression, ?t is the duration of the acceleration, but ?a is not equal to the acceleration. Rather, ?a is a dimensionless constant that equals the number of multiples of ?g that the acceleration is equal to. In one set of studies of rear-end collisions, a person's velocity increases by 17.5 km/h17.5 km/h with an acceleration of 30.5 m/s230.5 m/s2 . Let the +?+x direction point in the direction the car is traveling. What is the severity index for the collision? How far ?d does the person travel during the collision if the car was initially moving forward at 4.60 km/h4.60 km/h ?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
Very large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge the likelihood of injury is the severity index (??), defined as ??=?^5/2?. In the expression, ?t is the duration of the acceleration, but ?a is not equal to the acceleration. Rather, ?a is a dimensionless constant that equals the number of multiples of ?g that the acceleration is equal to.
In one set of studies of rear-end collisions, a person's velocity increases by 17.5 km/h17.5 km/h with an acceleration of 30.5 m/s230.5 m/s2 . Let the +?+x direction point in the direction the car is traveling. What is the severity index for the collision?
How far ?d does the person travel during the collision if the car was initially moving forward at 4.60 km/h4.60 km/h ?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps