Verifying a Trigonometric Identity In Exercises 9–18, verify the identity. tan x cot x 10. 9. tan t cot t = 1 sec x cos x 11. (1 + sin a)(1 – sin a) = cos? a 12. cos? ß – sin? ß = 2 cos² ß – 1 13. cos? ß – sin?ß = 1 – 2 sin² ß 14. sin? α- sin" α-cos" α-cosα 15. tan( - 0) tan 0 = 1 16. sin[(7/2) – x] cos[(1/2) – x] = tan x 17. sin t ese( - 1)- 18. sec y – cor( - >) = tan t y = 1
Verifying a Trigonometric Identity In Exercises 9–18, verify the identity. tan x cot x 10. 9. tan t cot t = 1 sec x cos x 11. (1 + sin a)(1 – sin a) = cos? a 12. cos? ß – sin? ß = 2 cos² ß – 1 13. cos? ß – sin?ß = 1 – 2 sin² ß 14. sin? α- sin" α-cos" α-cosα 15. tan( - 0) tan 0 = 1 16. sin[(7/2) – x] cos[(1/2) – x] = tan x 17. sin t ese( - 1)- 18. sec y – cor( - >) = tan t y = 1
Verifying a Trigonometric Identity In Exercises 9–18, verify the identity. tan x cot x 10. 9. tan t cot t = 1 sec x cos x 11. (1 + sin a)(1 – sin a) = cos? a 12. cos? ß – sin? ß = 2 cos² ß – 1 13. cos? ß – sin?ß = 1 – 2 sin² ß 14. sin? α- sin" α-cos" α-cosα 15. tan( - 0) tan 0 = 1 16. sin[(7/2) – x] cos[(1/2) – x] = tan x 17. sin t ese( - 1)- 18. sec y – cor( - >) = tan t y = 1
Verifying a Trigonometric Identity In Exercises 9–18, verify the identity.
Transcribed Image Text:Verifying a Trigonometric Identity In
Exercises 9–18, verify the identity.
tan x cot x
10.
9. tan t cot t = 1
sec x
cos x
11. (1 + sin a)(1 – sin a) = cos? a
12. cos? ß – sin? ß = 2 cos² ß – 1
13. cos? ß – sin?ß = 1 – 2 sin² ß
14. sin? α- sin" α-cos" α-cosα
15. tan( - 0) tan 0 = 1
16.
sin[(7/2) – x]
cos[(1/2) – x]
= tan x
17. sin t ese( - 1)-
18. sec y – cor( - >)
= tan t
y = 1
Equations that give the relation between different trigonometric functions and are true for any value of the variable for the domain. There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.