Verify the identity. csc(x) – cot(x) sec(x) – 1 cot(x) sin(x) cos(x) sin(x) csc(x) – cot(x) sec(x) – 1 1 cos(x) sin(x) sin(x) cos(x) sin(x) cos(x) sin(x) 1 1 cos(x) - cos?(x) sin(x) – sin(x) cos(x) cono(1-(| cos(x sin(x)(1 - cos(x)) sin(x) = cot(x)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Verify the Identity

\[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x) \]

### Step-by-Step Solution

1. Start with the expression:

   \[
   \frac{\csc(x) - \cot(x)}{\sec(x) - 1}
   \]

2. Rewrite using trigonometric identities:

   \[
   \frac{\frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1}
   \]

3. Simplify the expression:

   \[
   = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1 - \cos(x)}{\cos(x)}}
   \]

4. Multiply by the conjugate:

   \[
   = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1 - \cos(x)}{\cos(x)}} \times \frac{\cos(x)}{\cos(x)}
   \]

5. Further simplification leads to:

   \[
   = \frac{\sin(x) \cos(x)}{\sin(x)(1 - \cos(x))}
   \]

6. Continue simplifying:

   \[
   = \frac{\cos(x)(1 - \cos(x))}{\sin(x)(1 - \cos(x))}
   \]

7. Cancel common terms:

   \[
   = \frac{\cos(x)}{\sin(x)}
   \]

8. Final answer is:

   \[
   = \cot(x)
   \]

This completes the proof, and the original identity is verified.
Transcribed Image Text:## Verify the Identity \[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x) \] ### Step-by-Step Solution 1. Start with the expression: \[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} \] 2. Rewrite using trigonometric identities: \[ \frac{\frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1} \] 3. Simplify the expression: \[ = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1 - \cos(x)}{\cos(x)}} \] 4. Multiply by the conjugate: \[ = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1 - \cos(x)}{\cos(x)}} \times \frac{\cos(x)}{\cos(x)} \] 5. Further simplification leads to: \[ = \frac{\sin(x) \cos(x)}{\sin(x)(1 - \cos(x))} \] 6. Continue simplifying: \[ = \frac{\cos(x)(1 - \cos(x))}{\sin(x)(1 - \cos(x))} \] 7. Cancel common terms: \[ = \frac{\cos(x)}{\sin(x)} \] 8. Final answer is: \[ = \cot(x) \] This completes the proof, and the original identity is verified.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning