Verify the identity. csc(x) - cot(x) - cot(x) sec(x) – 1 cos(x) sin(x) sin(x) csc(x) – cot(x) sec(x) – 1 1 cos(x) sin(x). sin(x) cos(x) sin(x) sin(x) cos(x) cos(x) - cos (x) sin(x) – sin(x) cos(x) cost»(1 - ([ sin(x)(1 – cos(x)) sin(x) cot(x) Need Help? Read It Watch It

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
Could you please write the answers clearly and understandably? Thank you.
**Verifying the Trigonometric Identity**

The goal is to verify the trigonometric identity:

\[
\frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x)
\]

**Step-by-Step Verification:**

1. **Start with LHS:**

   \[
   \frac{\csc(x) - \cot(x)}{\sec(x) - 1} 
   \]

2. **Reciprocal Trigonometric Identities:**

   Using the identities \(\csc(x) = \frac{1}{\sin(x)}\), \(\cot(x) = \frac{\cos(x)}{\sin(x)}\), and \(\sec(x) = \frac{1}{\cos(x)}\), the expression becomes:

   \[
   \frac{\frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1}
   \]

3. **Simplify the Numerator:**

   \[
   = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1}
   \]

4. **Simplify the Denominator:**

   \[
   = \frac{1 - \cos(x)}{\sin(x)} \cdot \frac{\cos(x)}{1 - \cos(x)}
   \]

5. **Cancel Common Terms:**

   \[
   = \frac{\cos(x)}{\sin(x)}
   \]

6. **Simplified Result:**

   \[
   = \cot(x)
   \]

**Conclusion:**

Thus, the identity is verified:

\[
\frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x)
\]

Need Help?

- **Read It**: Access a detailed explanation and examples.
- **Watch It**: View a video tutorial for step-by-step guidance.
Transcribed Image Text:**Verifying the Trigonometric Identity** The goal is to verify the trigonometric identity: \[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x) \] **Step-by-Step Verification:** 1. **Start with LHS:** \[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} \] 2. **Reciprocal Trigonometric Identities:** Using the identities \(\csc(x) = \frac{1}{\sin(x)}\), \(\cot(x) = \frac{\cos(x)}{\sin(x)}\), and \(\sec(x) = \frac{1}{\cos(x)}\), the expression becomes: \[ \frac{\frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1} \] 3. **Simplify the Numerator:** \[ = \frac{\frac{1 - \cos(x)}{\sin(x)}}{\frac{1}{\cos(x)} - 1} \] 4. **Simplify the Denominator:** \[ = \frac{1 - \cos(x)}{\sin(x)} \cdot \frac{\cos(x)}{1 - \cos(x)} \] 5. **Cancel Common Terms:** \[ = \frac{\cos(x)}{\sin(x)} \] 6. **Simplified Result:** \[ = \cot(x) \] **Conclusion:** Thus, the identity is verified: \[ \frac{\csc(x) - \cot(x)}{\sec(x) - 1} = \cot(x) \] Need Help? - **Read It**: Access a detailed explanation and examples. - **Watch It**: View a video tutorial for step-by-step guidance.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning