Verify that 1; is an eigenvalue of A and that x; is a corresponding eigenvector. 11 %3D 13, х1 %3 (1, 2, —1) 12 = -3, x2 = (-2, 1 0) Аз %3D —3, Xз %3D (3, 0, 1) -1 4 -6 A = 4 5 -12 -2 -4 3 -- I -1 4 -6 1 Ах1 4 -12 2 13 2 -2 -4 3 -1 -1 -1 4 -6 -2 -2 Ax2 4 5 -12 1 -3 1 12x2 -2 -4 3 -1 4 -6 Axa 12 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Verify that 1; is an eigenvalue of A and that x; is a corresponding eigenvector.
11 %3D 13, х1 %3 (1, 2, —1)
12 = -3, x2 = (-2, 1 0)
Аз %3D —3, Xз %3D (3, 0, 1)
-1
4
-6
А —
4
5 -12
-2 -4
3
I
-1
4
-6
1
Ах1
4
-12
2
13
2
-2 -4
3
-1
-1
-1
4
-6
-2
-2
Ax2
4
5 -12
1
-3
1
12x2
-2 -4
3
--
-1
4
-6
3
Ax3
4
5 -12
-3
13x3
-2
-4
3
1
1
Transcribed Image Text:Verify that 1; is an eigenvalue of A and that x; is a corresponding eigenvector. 11 %3D 13, х1 %3 (1, 2, —1) 12 = -3, x2 = (-2, 1 0) Аз %3D —3, Xз %3D (3, 0, 1) -1 4 -6 А — 4 5 -12 -2 -4 3 I -1 4 -6 1 Ах1 4 -12 2 13 2 -2 -4 3 -1 -1 -1 4 -6 -2 -2 Ax2 4 5 -12 1 -3 1 12x2 -2 -4 3 -- -1 4 -6 3 Ax3 4 5 -12 -3 13x3 -2 -4 3 1 1
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,