Velomobile Characteristics Mass: 29 kg in addition to the rider Aerodynamic drag: F, = 0.0492 V* (Newtons) Rolling drag coefficient: C = 0.01 Rolling drag: F, = C,,N Mountain Bike Characteristics Mass: 10 kg in addition to the rider Aerodynamic drag: F, = 3.309 V° (Newtons) Rolling drag coefficient: C = 0.005 Rolling drag: F, = CN Perform the following assuming the bike and velomobile are on flat terrain. (a) Draw a free body diagram for each Neglecting the rotational energy of the wheels, determine: (b) The power required for each to travel 24 and 32 kph (about 15 and 20 mph) (c) The velocity with a power input of 150 W (d) The velocity going up a 6% grade with a power input of 150 W (you will also need a new free body diagram) (e) The work input required for each on a 12 km trip traveling 32 kph with 12 full stops and accelerations back up to speed. (f) Calculate the amount of calories burned. Assume the human body is 25% efficient.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Conservation Of Energy
Section: Chapter Questions
Problem 81P: Jane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with...
icon
Related questions
Question

We are going to assume the rider has a mass of 70 kg.

Velomobile Characteristics
Mass: 29 kg in addition to the rider
Aerodynamic drag: F = 0.0492 V (Newtons)
Rolling drag coefficient: C, = 0.01
Rolling drag: F, = CN
Mountain Bike Characteristics
Mass: 10 kg in addition to the rider
Aerodynamic drag: F, = 3. 309 V° (Newtons)
Rolling drag coefficient: C, = 0.005
Rolling drag: F, = C„N
Perform the following assuming the bike and velomobile are on flat terrain.
(a) Draw a free body diagram for each
Neglecting the rotational energy of the wheels, determine:
(b) The power required for each to travel 24 and 32 kph (about 15 and 20 mph)
(c) The velocity with a power input of 150 W
(d) The velocity going up a 6% grade with a power input of 150 W (you will also need a new free
body diagram)
(e) The work input required for each on a 12 km trip traveling 32 kph with 12 full stops and
accelerations back up to speed.
(f) Calculate the amount of calories burned. Assume the human body is 25% efficient.
Transcribed Image Text:Velomobile Characteristics Mass: 29 kg in addition to the rider Aerodynamic drag: F = 0.0492 V (Newtons) Rolling drag coefficient: C, = 0.01 Rolling drag: F, = CN Mountain Bike Characteristics Mass: 10 kg in addition to the rider Aerodynamic drag: F, = 3. 309 V° (Newtons) Rolling drag coefficient: C, = 0.005 Rolling drag: F, = C„N Perform the following assuming the bike and velomobile are on flat terrain. (a) Draw a free body diagram for each Neglecting the rotational energy of the wheels, determine: (b) The power required for each to travel 24 and 32 kph (about 15 and 20 mph) (c) The velocity with a power input of 150 W (d) The velocity going up a 6% grade with a power input of 150 W (you will also need a new free body diagram) (e) The work input required for each on a 12 km trip traveling 32 kph with 12 full stops and accelerations back up to speed. (f) Calculate the amount of calories burned. Assume the human body is 25% efficient.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Nonconservative forces
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University