V. EXERCISES 1. The demand estimation is the starting point for planning the future electric power supply. The consistency of demand growth over the years has led to numerous attempts to fit mathematical curves to this trend. One of the simplest curves is P = Poea(t-to) where a is the average per unit growth rate, P is the demand in year t, and Po is the given demand at year to. Assume the peak power demand in the United States in 1984 is 480 GW with an average growth rate of 3.4 percent. Using MATLAB, plot the predicated peak demand in GW from 1984 to 1999. Estimate the peak power demand for the year 1999. 2. The annual load of a substation is given in the following table. During each month, the power is assumed constant at an average value. Using MATLAB and the barcycle function, obtain a plot of the annual load curve. Write the necessary statements to find the average load and the annual load factor. Annual System Load Interval (Month) January Load (MW) 8 6 4 February March April May June July August September October November December 10 262222868 12 16 14 gm2
V. EXERCISES 1. The demand estimation is the starting point for planning the future electric power supply. The consistency of demand growth over the years has led to numerous attempts to fit mathematical curves to this trend. One of the simplest curves is P = Poea(t-to) where a is the average per unit growth rate, P is the demand in year t, and Po is the given demand at year to. Assume the peak power demand in the United States in 1984 is 480 GW with an average growth rate of 3.4 percent. Using MATLAB, plot the predicated peak demand in GW from 1984 to 1999. Estimate the peak power demand for the year 1999. 2. The annual load of a substation is given in the following table. During each month, the power is assumed constant at an average value. Using MATLAB and the barcycle function, obtain a plot of the annual load curve. Write the necessary statements to find the average load and the annual load factor. Annual System Load Interval (Month) January Load (MW) 8 6 4 February March April May June July August September October November December 10 262222868 12 16 14 gm2
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
Related questions
Question
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY