I'm having trouble understanding what exactly makes a linear ordinary differential equation "linear". I know that the major advantage of the linear ODEs is that a linear combination of particular solutions gives another particular solution. Characterized by additivity and homogeneity, this means that the output for a sum of inputs is equal to the sum of outputs for each individual input (e.g., f(3) + f(5) = f(3+5)= f(8)) and scaling the input by a factor scales the output by the same factor (e.g., f(6x) =6f(x)...but how would this look? Like say if I had 4e^5(t-1) satisfying the differential equation dy/dt=5y where y(1)=4, what would that "linear combination" look like?
I'm having trouble understanding what exactly makes a linear ordinary differential equation "linear". I know that the major advantage of the linear ODEs is that a linear combination of particular solutions gives another particular solution. Characterized by additivity and homogeneity, this means that the output for a sum of inputs is equal to the sum of outputs for each individual input (e.g., f(3) + f(5) = f(3+5)= f(8)) and scaling the input by a factor scales the output by the same factor (e.g., f(6x) =6f(x)...but how would this look? Like say if I had 4e^5(t-1) satisfying the differential equation dy/dt=5y where y(1)=4, what would that "linear combination" look like?
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
I'm having trouble understanding what exactly makes a linear ordinary differential equation "linear". I know that the major advantage of the linear ODEs is that a linear combination of particular solutions gives another particular solution. Characterized by additivity and homogeneity, this means that the output for a sum of inputs is equal to the sum of outputs for each individual input (e.g., f(3) + f(5) = f(3+5)= f(8)) and scaling the input by a factor scales the output by the same factor (e.g., f(6x) =6f(x)...but how would this look? Like say if I had 4e^5(t-1) satisfying the differential equation dy/dt=5y where y(1)=4, what would that "linear combination" look like?
Expert Solution
Step 1: Question Description:
Given,
- Like say if I had 4e^5(t-1) satisfying the differential equation dy/dt=5y where y(1)=4, what would that "linear combination" look like?
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education