Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity. Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.
The origin of the above quote (with "flame" or "candle" sometimes substituted for "light") is unclear. It is often attributed to either Lao Tzu or to the character Eldon Tyrell from the 1982 movie Blade Runner.
Stars follow a similar law, although the factor isn't precisely 1/2. In this problem, you will figure out the precise factor that the quote should have to apply to stars.
Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity.
Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps