Using the method of undetermined coefficients, find the particular solution of the following initial value problem: (а). у" + 4у' + 4y %3D 2ie , у0) %3D 1, У (0) — -3 = General Solutions: y(t) = c1 exp(| +c2 exp(-21) + еxp( Applying initial conditions c¡ = , C2 = )-t exp( + exp( Particular Solutions: y= exp(

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Using the method of undetermined coefficients, find the particular solution of the
following initial value problem:
(a). y" + 4y' + 4y = 2te-2", y(0) = 1, y'(0) = -3
General Solutions: y(t) = c1 exp(
exp(-21) + eхp(
+c2
Applying initial conditions ci =
C2 =
exp(
)-t exp(
)+ exp(
Particular Solutions:
y =
(b). у" — у — у %3D 0, у(0) %3D 0, у (0) %3 3, у"(0) %3 2
General Solutions:
y(t) :
c1 cos(
C2 sin(
)+c3 exp
Applying initial conditions c1
C2 =
C3 =
Particular Solutions: y(t) =
+ cos(
sin(
еxp
Transcribed Image Text:Using the method of undetermined coefficients, find the particular solution of the following initial value problem: (a). y" + 4y' + 4y = 2te-2", y(0) = 1, y'(0) = -3 General Solutions: y(t) = c1 exp( exp(-21) + eхp( +c2 Applying initial conditions ci = C2 = exp( )-t exp( )+ exp( Particular Solutions: y = (b). у" — у — у %3D 0, у(0) %3D 0, у (0) %3 3, у"(0) %3 2 General Solutions: y(t) : c1 cos( C2 sin( )+c3 exp Applying initial conditions c1 C2 = C3 = Particular Solutions: y(t) = + cos( sin( еxp
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,