Using the Gram-Schmidt orthonormalization associated with the following set of vectors. e₁ = [1 -1 6 1]; e₂=[-2 1 3 2]¹; e3 = [3 0 4 4]¹; e4 = [2 -1 1 0]¹. process, construct the orthonormal set

Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter4: Vector Spaces
Section4.5: Basis And Dimension
Problem 65E: Find a basis for the vector space of all 33 diagonal matrices. What is the dimension of this vector...
icon
Related questions
Question
Using the Gram–Schmidt orthonormalization process, construct the orthonormal set associated with the following set of vectors.

\[
\mathbf{e}_1 = [1 \, -1 \, 6 \, 1]^{\mathrm{T}}, \quad \mathbf{e}_2 = [-2 \, 1 \, 3 \, 2]^{\mathrm{T}}, \quad \mathbf{e}_3 = [3 \, 0 \, 4 \, 4]^{\mathrm{T}}, \quad \mathbf{e}_4 = [2 \, -1 \, 1 \, 0]^{\mathrm{T}}.
\]
Transcribed Image Text:Using the Gram–Schmidt orthonormalization process, construct the orthonormal set associated with the following set of vectors. \[ \mathbf{e}_1 = [1 \, -1 \, 6 \, 1]^{\mathrm{T}}, \quad \mathbf{e}_2 = [-2 \, 1 \, 3 \, 2]^{\mathrm{T}}, \quad \mathbf{e}_3 = [3 \, 0 \, 4 \, 4]^{\mathrm{T}}, \quad \mathbf{e}_4 = [2 \, -1 \, 1 \, 0]^{\mathrm{T}}. \]
Expert Solution
Step 1

Given:

Vectors:

e1=1,-1,6,1T

e2=-2,1,3,2T

e3=3,0,4,4T

e4=2,-1,1,0T

To find:

Orthonormal basis.

Gram Schmidt process:

Let w1=v1

Find w2 as w2=v2-v2,w1w1,w1w1

Find w3 as w3=v3-v3,w1w1,w1w1-v3,w2w2,w2w2

Find w4 as w4=v4-v4,w1w1,w1w1-v4,w2w2,w2w2-v4,w3w3,w3w3

The set of vectors w1,w2,w3,w4 form an orthogonal basis.

The set of vectors w1w1, w2w2, w3w3,w4w4 form an orthonormal basis.

Norm of the vectors:

Let the component of the vector r be x,y,z

then, r=x2+y2+z2, where r denotes the norm of the vector r.

Inner product of two vectors:

Let the components of the vectors as u=a,b,c and v=x,y,z,

then inner product of the vectors u and v is u,v=ax+by+cz

steps

Step by step

Solved in 9 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning